Quasi-Monte Carlo Method for Infinitely Divisible Random Vectors via Series Representations

An infinitely divisible random vector without Gaussian component admits representations of shot noise series. Due to possible slow convergence of the series, they have not been investigated as a device for Monte Carlo simulation. In this paper, we investigate the structure of shot noise series repre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2010-01, Vol.32 (4), p.1879-1897
Hauptverfasser: Imai, Junichi, Kawai, Reiichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An infinitely divisible random vector without Gaussian component admits representations of shot noise series. Due to possible slow convergence of the series, they have not been investigated as a device for Monte Carlo simulation. In this paper, we investigate the structure of shot noise series representations from a simulation point of view and discuss the effectiveness of quasi-Monte Carlo methods applied to series representations. The structure of series representations in nature tends to decrease their effective dimension and thus increase the efficiency of quasi-Monte Carlo methods, thanks to the greater uniformity of low-discrepancy sequence in the lower dimension. We illustrate the effectiveness of our approach through numerical results of moment and tail probability estimations for stable and gamma random variables. [PUBLICATION ABSTRACT]
ISSN:1064-8275
1095-7197
DOI:10.1137/090752365