Prism-pattern design of an LCD light guide plate using a neural-network optical model

This paper proposes a neural-network optical model for a backlight module of a liquid crystal display (LCD) to expedite the design of the light-scattering prism-pattern of its light guide plate (LGP). First, the prism surface of a light guide plate is divided into several equal regions. Then the neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optik (Stuttgart) 2010-12, Vol.121 (24), p.2245-2249
Hauptverfasser: Li, Chen-Jung, Fang, Yi-Chin, Cheng, Ming-Chia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a neural-network optical model for a backlight module of a liquid crystal display (LCD) to expedite the design of the light-scattering prism-pattern of its light guide plate (LGP). First, the prism surface of a light guide plate is divided into several equal regions. Then the neural-network optical model is implemented using a back-propagation neural network to establish the relationship between the distribution density of the prism pattern and the exiting-light luminance of the LGP at each region. The input–output patterns for the neural network training and verification are generated using orthogonal arrays and ASAP simulation. Then a for-loop computational algorithm is executed to search an approximately optimal distribution density of the prism pattern using the neural-network optical model such that high luminance uniformity is achieved. It is demonstrated by the case study of a 13 in. LCD backlight module that luminance uniformity could reach 93.1%. Thus it can be concluded that the developed neural-network optical model effectively expedites the LGP prism-pattern design.
ISSN:0030-4026
1618-1336
DOI:10.1016/j.ijleo.2009.09.007