On the equivalence of non-iterative transformation methods based on scaling and spiral groups

The non‐iterative numerical solution of nonlinear boundary value problems is a subject of great interest. The present paper is concerned with the theory of non‐iterative transformation methods (TMs). These methods are defined within group invariance theory. Here we prove the equivalence between two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2010-03, Vol.33 (5), p.585-591
Hauptverfasser: Fazio, Riccardo, Iacono, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The non‐iterative numerical solution of nonlinear boundary value problems is a subject of great interest. The present paper is concerned with the theory of non‐iterative transformation methods (TMs). These methods are defined within group invariance theory. Here we prove the equivalence between two non‐iterative TMs defined by the scaling group and the spiral group, respectively. Then, we report on numerical results concerning the steady state temperature space distribution in a non‐linear heat generation model. These results improve the ones, available in the literature, obtained by using the invariance with respect to a spiral group. Copyright © 2009 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
1099-1476
DOI:10.1002/mma.1179