A question concerning a polynomial inequality and an answer
Let M 2 ( g ; ρ ) denote the L 2 mean of g on the circle | z | = ρ . We prove that for any polynomial f ( z ) ≔ ∑ k = 0 n a k z k of degree at most n , with | a n − k | = | a k | for k = 0 , 1 , … , n , the ratio M 2 ( f ′ ; ρ ) / M 2 ( f ; 1 ) is maximized by f ( z ) ≔ 1 + z n for all ρ ∈ [ 2 − 1 /...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-12, Vol.71 (12), p.e2710-e2716 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
M
2
(
g
;
ρ
)
denote the
L
2
mean of
g
on the circle
|
z
|
=
ρ
. We prove that for any polynomial
f
(
z
)
≔
∑
k
=
0
n
a
k
z
k
of degree at most
n
, with
|
a
n
−
k
|
=
|
a
k
|
for
k
=
0
,
1
,
…
,
n
, the ratio
M
2
(
f
′
;
ρ
)
/
M
2
(
f
;
1
)
is maximized by
f
(
z
)
≔
1
+
z
n
for all
ρ
∈
[
2
−
1
/
n
,
∞
)
. At least in the case where
n
is even, the restriction on
ρ
cannot be relaxed. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2009.06.016 |