A question concerning a polynomial inequality and an answer

Let M 2 ( g ; ρ ) denote the L 2 mean of g on the circle | z | = ρ . We prove that for any polynomial f ( z ) ≔ ∑ k = 0 n a k z k of degree at most n , with | a n − k | = | a k | for k = 0 , 1 , … , n , the ratio M 2 ( f ′ ; ρ ) / M 2 ( f ; 1 ) is maximized by f ( z ) ≔ 1 + z n for all ρ ∈ [ 2 − 1 /...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-12, Vol.71 (12), p.e2710-e2716
Hauptverfasser: Qazi, M.A., Rahman, Q.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M 2 ( g ; ρ ) denote the L 2 mean of g on the circle | z | = ρ . We prove that for any polynomial f ( z ) ≔ ∑ k = 0 n a k z k of degree at most n , with | a n − k | = | a k | for k = 0 , 1 , … , n , the ratio M 2 ( f ′ ; ρ ) / M 2 ( f ; 1 ) is maximized by f ( z ) ≔ 1 + z n for all ρ ∈ [ 2 − 1 / n , ∞ ) . At least in the case where n is even, the restriction on ρ cannot be relaxed.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2009.06.016