Micromechanics of particle-reinforced elasto-viscoplastic composites: Finite element simulations versus affine homogenization

The micromechanics of elasto-viscoplastic composites made up of a random and homogeneous dispersion of spherical inclusions in a continuous matrix was studied with two methods. The first one is an affine homogenization approach, which transforms the local constitutive laws into fictitious linear the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of plasticity 2007-06, Vol.23 (6), p.1041-1060
Hauptverfasser: Pierard, O., LLorca, J., Segurado, J., Doghri, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The micromechanics of elasto-viscoplastic composites made up of a random and homogeneous dispersion of spherical inclusions in a continuous matrix was studied with two methods. The first one is an affine homogenization approach, which transforms the local constitutive laws into fictitious linear thermo-elastic relations in the Laplace–Carson domain so that corresponding homogenization schemes can apply, and the temporal response is computed after a numerical inversion of Laplace transform. The second method is the direct numerical simulation by finite elements of a three-dimensional representative volume element of the composite microstructure. The numerical simulations carried out over different realizations of the composite microstructure showed very little scatter and thus provided – for the first time – “exact” results in the elasto-viscoplastic regime that can be used as benchmarks to check the accuracy of other models. Overall, the predictions of the affine homogenization model were excellent, regardless of the volume fraction of spheres, of the loading paths (shear, uniaxial tension and biaxial tension as well as monotonic and cyclic deformation), particularly at low strain rates. It was found, however, that the accuracy decreased systematically as the strain rate increased. The detailed information of the stress and strain microfields given by the finite element simulations was used to analyze the source of this difference, so that better homogenization methods can be developed.
ISSN:0749-6419
1879-2154
DOI:10.1016/j.ijplas.2006.09.003