Methods for removal of residual catalyst from polymers prepared by ring opening metathesis polymerization

Methods for removing the residual Grubbs' third generation catalyst from polymers prepared by ring opening metathesis polymerization are reported. Two strategies were investigated for reduction of the residual catalyst in the final polymer product. The first strategy involved the use of heterog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2010-12, Vol.48 (24), p.5752-5757
Hauptverfasser: Lambeth, Robert H, Pederson, Samuel J, Baranoski, Myvan, Rawlett, Adam M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Methods for removing the residual Grubbs' third generation catalyst from polymers prepared by ring opening metathesis polymerization are reported. Two strategies were investigated for reduction of the residual catalyst in the final polymer product. The first strategy involved the use of heterogeneous functionalized particles to scavenge the catalyst from the solution. Filtration of the particles followed by precipitation produced polymers with 10-60 ppm residual catalyst, depending on the type of particle used, surface functional groups, and number of equivalents. The second strategy used small organic molecules that could coordinate to the metal species and modify the solubility of the catalyst, facilitating partitioning of the catalyst into the precipitation solvent. Several types of molecules with varied functionality reduced the residual catalyst level to 30-120 ppm, depending on the loading. Hydrogenation of the polymer backbone followed by precipitation lowered the residual Ru content from 195 ppm to 10 ppm, suggesting that the difficulty of completely removing the catalyst could be a result of coordination of the metal species to the double bonds in the polymer backbone. Reducing the amount of trace catalyst significantly improved the oxidative stability of the polymer.
ISSN:0887-624X
1099-0518
1099-0518
DOI:10.1002/pola.24380