Performance evaluation of a synchronization station with multiple inputs and population constraints

Synchronization stations are commonly used to model kitting operations in manufacturing systems. At a kitting station, the components required for assembly are grouped together prior to release to the assembly line. When the supply process of components is stochastic, exact analysis is hard in a gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2012-03, Vol.39 (3), p.560-570
Hauptverfasser: Ramakrishnan, Ram, Krishnamurthy, Ananth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synchronization stations are commonly used to model kitting operations in manufacturing systems. At a kitting station, the components required for assembly are grouped together prior to release to the assembly line. When the supply process of components is stochastic, exact analysis is hard in a general setting. This paper presents an approximate analysis of a kitting station with multiple components. The stochastic supply process of each component is characterized by mean and variability parameters of the corresponding fabrication facility, and the system imposes a limit on total inventory for each component. The resulting synchronization station model is analyzed using an aggregation procedure that uses the analysis of a synchronization station with two inputs as a key building block. Numerical results indicate that the estimates of throughput and queue length obtained from the analysis validate well with those obtained from detailed simulations. The analysis also helps to quantify the effect of the number of components and variability on kitting delays.
ISSN:0305-0548
1873-765X
0305-0548
DOI:10.1016/j.cor.2011.05.009