The mixing time of Glauber dynamics for coloring regular trees
We consider Metropolis Glauber dynamics for sampling proper q‐colorings of the n‐vertex complete b‐ary tree when 3 ≤ q ≤ b/(2lnb). We give both upper and lower bounds on the mixing time. Our upper bound is nO(b/ log b) and our lower bound is nΩ(b/(q log b)), where the constants implicit in the O() a...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2010-07, Vol.36 (4), p.464-476 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider Metropolis Glauber dynamics for sampling proper q‐colorings of the n‐vertex complete b‐ary tree when 3 ≤ q ≤ b/(2lnb). We give both upper and lower bounds on the mixing time. Our upper bound is nO(b/ log b) and our lower bound is nΩ(b/(q log b)), where the constants implicit in the O() and Ω() notation do not depend upon n, q or b. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010 |
---|---|
ISSN: | 1042-9832 1098-2418 1098-2418 |
DOI: | 10.1002/rsa.20303 |