The mixing time of Glauber dynamics for coloring regular trees

We consider Metropolis Glauber dynamics for sampling proper q‐colorings of the n‐vertex complete b‐ary tree when 3 ≤ q ≤ b/(2lnb). We give both upper and lower bounds on the mixing time. Our upper bound is nO(b/ log b) and our lower bound is nΩ(b/(q log b)), where the constants implicit in the O() a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2010-07, Vol.36 (4), p.464-476
Hauptverfasser: Goldberg, Leslie Ann, Jerrum, Mark, Karpinski, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Metropolis Glauber dynamics for sampling proper q‐colorings of the n‐vertex complete b‐ary tree when 3 ≤ q ≤ b/(2lnb). We give both upper and lower bounds on the mixing time. Our upper bound is nO(b/ log b) and our lower bound is nΩ(b/(q log b)), where the constants implicit in the O() and Ω() notation do not depend upon n, q or b. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010
ISSN:1042-9832
1098-2418
1098-2418
DOI:10.1002/rsa.20303