Analysis of phenolic and triterpenoid compounds in licorice and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry

High‐performance liquid chromatography with diode‐array detection (HPLC/DAD), time‐of‐flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QITMS) were used for separation and identification of several compounds in licorice and rat plasma after oral administration of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2010-01, Vol.24 (2), p.209-218
Hauptverfasser: Tan, Guangguo, Zhu, Zhenyu, Zhang, Hai, Zhao, Liang, Liu, Yi, Dong, Xin, Lou, Ziyang, Zhang, Guoqing, Chai, Yifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High‐performance liquid chromatography with diode‐array detection (HPLC/DAD), time‐of‐flight mass spectrometry (HPLC/TOFMS) and quadrupole ion trap mass spectrometry (HPLC/QITMS) were used for separation and identification of several compounds in licorice and rat plasma after oral administration of the herbal extract. Three phenolic compounds and one triterpenoid in licorice extract were unambiguously identified by comparing with the standard compounds. A formula database of known compounds in licorice was established, against which the other 42 compounds were identified effectively based on the accurate extract masses and formulae acquired by HPLC/TOFMS. In order to differentiate the isomers, tandem mass spectrometry was also used. The deduced fragmentation behaviors in QITMS were used to distinguish seven groups of isomers in licorice. By means of the three detectors, 46 compounds in licorice were identified. After oral administration of the extract, 25 compounds in rat plasma were detected and identified by comparing and contrasting the compounds measured in licorice with those in the plasma samples by HPLC/TOFMS. It is concluded that a rapid and effective method based on three analytical techniques was established, which is useful for identification of multiple compounds in licorice in vitro and in vivo. The result should be very useful for the quality control and curative mechanism study of licorice. Copyright © 2009 John Wiley & Sons, Ltd.
ISSN:0951-4198
1097-0231
1097-0231
DOI:10.1002/rcm.4373