Antitumor Effect of Liposomal Histone Deacetylase Inhibitor-Lipid Conjugates in Vitro
Histone deacetylase inhibitor (HDACI), suberoylanilide hydroxamic acid (SAHA), approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma, is a promising new treatment strategy for various cancers. In this study, we hypothesized that a liposomal formulation of...
Gespeichert in:
Veröffentlicht in: | Chemical & Pharmaceutical Bulletin 2011/11/01, Vol.59(11), pp.1386-1392 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Histone deacetylase inhibitor (HDACI), suberoylanilide hydroxamic acid (SAHA), approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma, is a promising new treatment strategy for various cancers. In this study, we hypothesized that a liposomal formulation of HDACI might efficiently deliver HDACI into tumors. To incorporate HDACI efficiently into the liposomal membrane, we synthesized six HDACI-lipid conjugates, in which polyethylene glycol2000 (PEG2000)-lipid or cholesterol (Chol) was linked with a potent hydroxamic acid, HDACI, SAHA or K-182, by cleavable linkers, such as ester, carbamide and disulfide bonds. Liposomal HDACI-lipid conjugates were prepared with distearoylphosphatidylcholine (DSPC) and HDACI-Chol conjugate or with DSPC, Chol and HDACI-PEG-lipid conjugates, and their cytotoxicities were evaluated for human cervix tumor HeLa and mouse colon tumor Colon 26 cells. Among the liposomes, liposomal oleyl-PEG2000-SAHA conjugated with SAHA and oleyl-PEG2000 via a carbamate linker showed higher cytotoxicity via hyperacetylation of histone H3 and induction of caspase 3/7 activity. These results suggested that liposomal HDACI-lipid conjugates may be a potential tool for cancer therapy. |
---|---|
ISSN: | 0009-2363 1347-5223 |
DOI: | 10.1248/cpb.59.1386 |