Degradation of micromorph silicon solar cells after exposure to 65 MeV protons

Silicon micromorph tandem solar cells, grown on commercial TCO coated substrates by plasma enhanced chemical vapour deposition, with an initial efficiency higher than 10%, have been degraded, in order to check their stability under space conditions, by irradiation with 65 MeV protons with fluences r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2010-04, Vol.7 (3-4), p.1065-1068
Hauptverfasser: Neitzert, Heinz-Christoph, Labonia, Laura, Citro, Michele, Delli Veneri, Paola, Mercaldo, Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon micromorph tandem solar cells, grown on commercial TCO coated substrates by plasma enhanced chemical vapour deposition, with an initial efficiency higher than 10%, have been degraded, in order to check their stability under space conditions, by irradiation with 65 MeV protons with fluences ranging from 1012protons/cm2 up to 1014protons/cm2. For low proton fluences we find a stronger decrease of the top amorphous cell photocurrent due to the stronger impact of the proton beam on the glass substrate transparency in the visible wavelength range, as compared to the infrared range. Only for very high fluences a stronger degradation of the photocurrent in the infrared wavelength range where the bottom microcrystalline cell is dominating the spectral response, has been observed. Because the non‐irradiated cell has been found to be spectrally mismatched in favour of the top amorphous cell under AM1.5 and even more under AM0 irradiation conditions, for low and intermediate fluences the irradiation decreases the spectral mismatch of the micromorph tandem cells and results consequently in a relative stabilization of the irradiation induced degradation. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:1862-6351
1610-1642
1610-1642
DOI:10.1002/pssc.200982811