A robust estimation scheme for clock phase offsets in wireless sensor networks in the presence of non-Gaussian random delays

To cope with the Gaussian or non-Gaussian nature of the random network delays, a novel method, referred to as the Gaussian mixture Kalman particle filter (GMKPF), is proposed herein to estimate the clock offset in wireless sensor networks. GMKPF represents a better and more flexible alternative to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2009-06, Vol.89 (6), p.1155-1161
Hauptverfasser: Kim, Jang-Sub, Lee, Jaehan, Serpedin, Erchin, Qaraqe, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To cope with the Gaussian or non-Gaussian nature of the random network delays, a novel method, referred to as the Gaussian mixture Kalman particle filter (GMKPF), is proposed herein to estimate the clock offset in wireless sensor networks. GMKPF represents a better and more flexible alternative to the symmetric Gaussian maximum likelihood (SGML), and symmetric exponential maximum likelihood (SEML) estimators for clock offset estimation in non-Gaussian or non-exponential random delay models. The computer simulations illustrate that GMKPF yields much more accurate results relative to SGML and SEML when the network delays are modeled in terms of a single non-Gaussian/non-exponential distribution or as a mixture of several distributions.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2008.12.021