Roles of Interlayers in Efficient Organic Photovoltaic Devices

This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2010-12, Vol.31 (24), p.2095-2108
Hauptverfasser: Park, Jong Hyeok, Lee, Tae-Woo, Chin, Byung-Doo, Wang, Dong Hwan, Park, O Ok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2108
container_issue 24
container_start_page 2095
container_title Macromolecular rapid communications.
container_volume 31
creator Park, Jong Hyeok
Lee, Tae-Woo
Chin, Byung-Doo
Wang, Dong Hwan
Park, O Ok
description This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers. This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.
doi_str_mv 10.1002/marc.201000310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901659966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896243315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxuiAUSvHslcDKdZ277pr4sJWQFJEAQkHJvSeYXi7Ay2s-j-95bsunrbS_v68vm-vny_hLxndMIo5R9nLvkJp6WmwOgW2WWCsxoMV69KTTmvGYDcIW9yfiyMbijfJjucCakkyF3y6WroMFdDqE77EVPnFphyFfvqKIToI_ZjdZHuXR999e1hGIfnoRtdeXzG5-gxvyWvg-syvlvde-Tm-Oj79Et9dnFyOj08q73QQMvJjQauwXjd8ODv2lYEBUEZQyVyZEZr0SotvBKNabgUTHloDZZmUBpgjxws5z6l4ecc82hnMXvsOtfjMM_WUCaFMVJuJLWRvAFgYjMppQBZrC3kZEn6NOScMNinFIvzC8uofYnBvsRg1zEUwf5q9Pxuhu0a_-t7AT6sAJe960JyvY_5HweSCypU4cyS-xU7XGz41n49vJr-v0S91MY84u-11qUfVipQwt6en1h2fa45U8xewh91p6zN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866536010</pqid></control><display><type>article</type><title>Roles of Interlayers in Efficient Organic Photovoltaic Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Jong Hyeok ; Lee, Tae-Woo ; Chin, Byung-Doo ; Wang, Dong Hwan ; Park, O Ok</creator><creatorcontrib>Park, Jong Hyeok ; Lee, Tae-Woo ; Chin, Byung-Doo ; Wang, Dong Hwan ; Park, O Ok</creatorcontrib><description>This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers. This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.</description><identifier>ISSN: 1022-1336</identifier><identifier>ISSN: 1521-3927</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201000310</identifier><identifier>PMID: 21567636</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; charge transport ; Devices ; electrochemistry ; Electrodes ; Electronics ; Energy ; Exact sciences and technology ; Extraction ; interfaces ; Interlayers ; Metal oxides ; nanotechnology ; Natural energy ; Optoelectronic devices ; photophysics ; Photovoltaic cells ; Photovoltaic conversion ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Strategy</subject><ispartof>Macromolecular rapid communications., 2010-12, Vol.31 (24), p.2095-2108</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</citedby><cites>FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201000310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201000310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23625057$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21567636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><creatorcontrib>Chin, Byung-Doo</creatorcontrib><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><title>Roles of Interlayers in Efficient Organic Photovoltaic Devices</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers. This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.</description><subject>Applied sciences</subject><subject>charge transport</subject><subject>Devices</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>interfaces</subject><subject>Interlayers</subject><subject>Metal oxides</subject><subject>nanotechnology</subject><subject>Natural energy</subject><subject>Optoelectronic devices</subject><subject>photophysics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Strategy</subject><issn>1022-1336</issn><issn>1521-3927</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PFDEUxxuiAUSvHslcDKdZ277pr4sJWQFJEAQkHJvSeYXi7Ay2s-j-95bsunrbS_v68vm-vny_hLxndMIo5R9nLvkJp6WmwOgW2WWCsxoMV69KTTmvGYDcIW9yfiyMbijfJjucCakkyF3y6WroMFdDqE77EVPnFphyFfvqKIToI_ZjdZHuXR999e1hGIfnoRtdeXzG5-gxvyWvg-syvlvde-Tm-Oj79Et9dnFyOj08q73QQMvJjQauwXjd8ODv2lYEBUEZQyVyZEZr0SotvBKNabgUTHloDZZmUBpgjxws5z6l4ecc82hnMXvsOtfjMM_WUCaFMVJuJLWRvAFgYjMppQBZrC3kZEn6NOScMNinFIvzC8uofYnBvsRg1zEUwf5q9Pxuhu0a_-t7AT6sAJe960JyvY_5HweSCypU4cyS-xU7XGz41n49vJr-v0S91MY84u-11qUfVipQwt6en1h2fa45U8xewh91p6zN</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Park, Jong Hyeok</creator><creator>Lee, Tae-Woo</creator><creator>Chin, Byung-Doo</creator><creator>Wang, Dong Hwan</creator><creator>Park, O Ok</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101215</creationdate><title>Roles of Interlayers in Efficient Organic Photovoltaic Devices</title><author>Park, Jong Hyeok ; Lee, Tae-Woo ; Chin, Byung-Doo ; Wang, Dong Hwan ; Park, O Ok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>charge transport</topic><topic>Devices</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>interfaces</topic><topic>Interlayers</topic><topic>Metal oxides</topic><topic>nanotechnology</topic><topic>Natural energy</topic><topic>Optoelectronic devices</topic><topic>photophysics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><creatorcontrib>Chin, Byung-Doo</creatorcontrib><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jong Hyeok</au><au>Lee, Tae-Woo</au><au>Chin, Byung-Doo</au><au>Wang, Dong Hwan</au><au>Park, O Ok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of Interlayers in Efficient Organic Photovoltaic Devices</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2010-12-15</date><risdate>2010</risdate><volume>31</volume><issue>24</issue><spage>2095</spage><epage>2108</epage><pages>2095-2108</pages><issn>1022-1336</issn><issn>1521-3927</issn><eissn>1521-3927</eissn><abstract>This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers. This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21567636</pmid><doi>10.1002/marc.201000310</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2010-12, Vol.31 (24), p.2095-2108
issn 1022-1336
1521-3927
1521-3927
language eng
recordid cdi_proquest_miscellaneous_901659966
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
charge transport
Devices
electrochemistry
Electrodes
Electronics
Energy
Exact sciences and technology
Extraction
interfaces
Interlayers
Metal oxides
nanotechnology
Natural energy
Optoelectronic devices
photophysics
Photovoltaic cells
Photovoltaic conversion
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Strategy
title Roles of Interlayers in Efficient Organic Photovoltaic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20Interlayers%20in%20Efficient%20Organic%20Photovoltaic%20Devices&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Park,%20Jong%20Hyeok&rft.date=2010-12-15&rft.volume=31&rft.issue=24&rft.spage=2095&rft.epage=2108&rft.pages=2095-2108&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201000310&rft_dat=%3Cproquest_cross%3E896243315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866536010&rft_id=info:pmid/21567636&rfr_iscdi=true