Roles of Interlayers in Efficient Organic Photovoltaic Devices
This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include inc...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2010-12, Vol.31 (24), p.2095-2108 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2108 |
---|---|
container_issue | 24 |
container_start_page | 2095 |
container_title | Macromolecular rapid communications. |
container_volume | 31 |
creator | Park, Jong Hyeok Lee, Tae-Woo Chin, Byung-Doo Wang, Dong Hwan Park, O Ok |
description | This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers.
This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs. |
doi_str_mv | 10.1002/marc.201000310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901659966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896243315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxuiAUSvHslcDKdZ277pr4sJWQFJEAQkHJvSeYXi7Ay2s-j-95bsunrbS_v68vm-vny_hLxndMIo5R9nLvkJp6WmwOgW2WWCsxoMV69KTTmvGYDcIW9yfiyMbijfJjucCakkyF3y6WroMFdDqE77EVPnFphyFfvqKIToI_ZjdZHuXR999e1hGIfnoRtdeXzG5-gxvyWvg-syvlvde-Tm-Oj79Et9dnFyOj08q73QQMvJjQauwXjd8ODv2lYEBUEZQyVyZEZr0SotvBKNabgUTHloDZZmUBpgjxws5z6l4ecc82hnMXvsOtfjMM_WUCaFMVJuJLWRvAFgYjMppQBZrC3kZEn6NOScMNinFIvzC8uofYnBvsRg1zEUwf5q9Pxuhu0a_-t7AT6sAJe960JyvY_5HweSCypU4cyS-xU7XGz41n49vJr-v0S91MY84u-11qUfVipQwt6en1h2fa45U8xewh91p6zN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866536010</pqid></control><display><type>article</type><title>Roles of Interlayers in Efficient Organic Photovoltaic Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Park, Jong Hyeok ; Lee, Tae-Woo ; Chin, Byung-Doo ; Wang, Dong Hwan ; Park, O Ok</creator><creatorcontrib>Park, Jong Hyeok ; Lee, Tae-Woo ; Chin, Byung-Doo ; Wang, Dong Hwan ; Park, O Ok</creatorcontrib><description>This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers.
This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.</description><identifier>ISSN: 1022-1336</identifier><identifier>ISSN: 1521-3927</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201000310</identifier><identifier>PMID: 21567636</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; charge transport ; Devices ; electrochemistry ; Electrodes ; Electronics ; Energy ; Exact sciences and technology ; Extraction ; interfaces ; Interlayers ; Metal oxides ; nanotechnology ; Natural energy ; Optoelectronic devices ; photophysics ; Photovoltaic cells ; Photovoltaic conversion ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Strategy</subject><ispartof>Macromolecular rapid communications., 2010-12, Vol.31 (24), p.2095-2108</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</citedby><cites>FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201000310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201000310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23625057$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21567636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><creatorcontrib>Chin, Byung-Doo</creatorcontrib><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><title>Roles of Interlayers in Efficient Organic Photovoltaic Devices</title><title>Macromolecular rapid communications.</title><addtitle>Macromol. Rapid Commun</addtitle><description>This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers.
This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.</description><subject>Applied sciences</subject><subject>charge transport</subject><subject>Devices</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>interfaces</subject><subject>Interlayers</subject><subject>Metal oxides</subject><subject>nanotechnology</subject><subject>Natural energy</subject><subject>Optoelectronic devices</subject><subject>photophysics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Strategy</subject><issn>1022-1336</issn><issn>1521-3927</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PFDEUxxuiAUSvHslcDKdZ277pr4sJWQFJEAQkHJvSeYXi7Ay2s-j-95bsunrbS_v68vm-vny_hLxndMIo5R9nLvkJp6WmwOgW2WWCsxoMV69KTTmvGYDcIW9yfiyMbijfJjucCakkyF3y6WroMFdDqE77EVPnFphyFfvqKIToI_ZjdZHuXR999e1hGIfnoRtdeXzG5-gxvyWvg-syvlvde-Tm-Oj79Et9dnFyOj08q73QQMvJjQauwXjd8ODv2lYEBUEZQyVyZEZr0SotvBKNabgUTHloDZZmUBpgjxws5z6l4ecc82hnMXvsOtfjMM_WUCaFMVJuJLWRvAFgYjMppQBZrC3kZEn6NOScMNinFIvzC8uofYnBvsRg1zEUwf5q9Pxuhu0a_-t7AT6sAJe960JyvY_5HweSCypU4cyS-xU7XGz41n49vJr-v0S91MY84u-11qUfVipQwt6en1h2fa45U8xewh91p6zN</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Park, Jong Hyeok</creator><creator>Lee, Tae-Woo</creator><creator>Chin, Byung-Doo</creator><creator>Wang, Dong Hwan</creator><creator>Park, O Ok</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101215</creationdate><title>Roles of Interlayers in Efficient Organic Photovoltaic Devices</title><author>Park, Jong Hyeok ; Lee, Tae-Woo ; Chin, Byung-Doo ; Wang, Dong Hwan ; Park, O Ok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5830-c529832839c842fcbdd5f73f79906e2e19885d785c7549426517c3d9e5d7f7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>charge transport</topic><topic>Devices</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>interfaces</topic><topic>Interlayers</topic><topic>Metal oxides</topic><topic>nanotechnology</topic><topic>Natural energy</topic><topic>Optoelectronic devices</topic><topic>photophysics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Jong Hyeok</creatorcontrib><creatorcontrib>Lee, Tae-Woo</creatorcontrib><creatorcontrib>Chin, Byung-Doo</creatorcontrib><creatorcontrib>Wang, Dong Hwan</creatorcontrib><creatorcontrib>Park, O Ok</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Jong Hyeok</au><au>Lee, Tae-Woo</au><au>Chin, Byung-Doo</au><au>Wang, Dong Hwan</au><au>Park, O Ok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of Interlayers in Efficient Organic Photovoltaic Devices</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol. Rapid Commun</addtitle><date>2010-12-15</date><risdate>2010</risdate><volume>31</volume><issue>24</issue><spage>2095</spage><epage>2108</epage><pages>2095-2108</pages><issn>1022-1336</issn><issn>1521-3927</issn><eissn>1521-3927</eissn><abstract>This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers.
This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21567636</pmid><doi>10.1002/marc.201000310</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2010-12, Vol.31 (24), p.2095-2108 |
issn | 1022-1336 1521-3927 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_901659966 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences charge transport Devices electrochemistry Electrodes Electronics Energy Exact sciences and technology Extraction interfaces Interlayers Metal oxides nanotechnology Natural energy Optoelectronic devices photophysics Photovoltaic cells Photovoltaic conversion Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Solar cells Solar cells. Photoelectrochemical cells Solar energy Strategy |
title | Roles of Interlayers in Efficient Organic Photovoltaic Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20Interlayers%20in%20Efficient%20Organic%20Photovoltaic%20Devices&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Park,%20Jong%20Hyeok&rft.date=2010-12-15&rft.volume=31&rft.issue=24&rft.spage=2095&rft.epage=2108&rft.pages=2095-2108&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201000310&rft_dat=%3Cproquest_cross%3E896243315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=866536010&rft_id=info:pmid/21567636&rfr_iscdi=true |