Roles of Interlayers in Efficient Organic Photovoltaic Devices

This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular rapid communications. 2010-12, Vol.31 (24), p.2095-2108
Hauptverfasser: Park, Jong Hyeok, Lee, Tae-Woo, Chin, Byung-Doo, Wang, Dong Hwan, Park, O Ok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This review discusses interfacial layers in organic photovoltaic devices. The first part of the review focuses on the hole extraction layer, which is located between a positive electrode and an organic photoactive material. Strategies to improve hole extraction from the photoactive layer include incorporation of several different types of hole extraction layers, such as conductive polymeric materials, self‐assembled molecules and metal oxides, as well as surface treatment of the positive electrodes and the conductive polymeric layers. In the second part, we review recent research on interlayers that are located between a negative electrode and a photoactive layer to efficiently extract electrons from the active layer. These materials include titanium oxides, metal fluorides and other organic layers. This review presents interfacial layers used in organic photovoltaic devices (OPVs) to improve their power conversion efficiency and long term stability. We summarize the recent progress obtained by including interlayers in OPVs, with regard to interfacial layers for efficient hole extraction or efficient electron extraction, as well as efficient hole or electron extraction via nano‐patterned structures, in OPVs.
ISSN:1022-1336
1521-3927
1521-3927
DOI:10.1002/marc.201000310