Surface modification of gas diffusion layers by inorganic nanomaterials for performance enhancement of proton exchange membrane fuel cells at low RH conditions

Prompted by our earlier study that fumed silica on gas diffusion layer (GDL) favored a performance improvement of the single fuel cell at lower RH conditions, the present study has been carried out with inorganic oxides in the nanoscale such as TiO 2, Al 2O 3, commercially available mixed oxides, hy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2009-08, Vol.34 (15), p.6377-6383
Hauptverfasser: Cindrella, L., Kannan, A.M., Ahmad, R., Thommes, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prompted by our earlier study that fumed silica on gas diffusion layer (GDL) favored a performance improvement of the single fuel cell at lower RH conditions, the present study has been carried out with inorganic oxides in the nanoscale such as TiO 2, Al 2O 3, commercially available mixed oxides, hydrophilic silica and aerosil silica. The structure of each of the oxide coating on the GDL surface has resulted in refinement with graded pore dimension as seen from the Hg porosimetry data. The fuel cell evaluation at various RH conditions (50–100%) revealed that the performance of all the inorganic oxides loaded GDL is very high compared to that of pristine GDL. The results confirm our earlier observation that inorganic oxides on GDL bring about structural refinement favorable for the transport of gases, and their water retaining capacity enable a high performance of the fuel cell even at low RH conditions.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2009.05.086