Direct and inverse problems for electromagnetic scattering by a doubly periodic structure with a partially coated dielectric
Consider the problem of scattering of electromagnetic waves by a doubly periodic Lipschitz structure. The medium above the structure is assumed to be homogenous and lossless with a positive dielectric coefficient. Below the structure there is a perfect conductor with a partially coated dielectric bo...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2010-01, Vol.33 (2), p.147-156 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the problem of scattering of electromagnetic waves by a doubly periodic Lipschitz structure. The medium above the structure is assumed to be homogenous and lossless with a positive dielectric coefficient. Below the structure there is a perfect conductor with a partially coated dielectric boundary. We first establish the well‐posedness of the direct problem in a proper function space and then obtain a uniqueness result for the inverse problem by extending Isakov's method. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 1099-1476 |
DOI: | 10.1002/mma.1157 |