Graft polymerization of acrylonitrile onto paper and characterization of the grafted product
The chemical graft copolymerization reaction of acrylonitrile (AN) onto paper sheet was performed. The effect of initiator concentration, monomer concentration, and temperature on the reaction rate was studied. The reaction rate equation of the graft copolymerization reaction is found to be RP = K2...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2011-05, Vol.120 (3), p.1411-1419 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chemical graft copolymerization reaction of acrylonitrile (AN) onto paper sheet was performed. The effect of initiator concentration, monomer concentration, and temperature on the reaction rate was studied. The reaction rate equation of the graft copolymerization reaction is found to be RP = K2 [initiator]0.54[monomer]1.13. The apparent activation energy (Ea) of the copolymerization reaction is found to be 35.99 KJ/mol. The infrared characteristic absorption bands for cellulosic paper structure and the paper gr‐AN are studied. Tensile break load, porosity, and burst strength were measured for the grafted and pure paper sheet. It was found that the mechanical properties are improved by grafting. The chemical resistance of the graft product against strong acid (HCl), strong alkali (NaOH), polar and nonpolar solvents was investigated. It was found that the resistance to these chemicals is enhanced by grafting. From the TGA and DTA data, it is clear that the grafted paper sheet is more thermally stable than pure paper sheet. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 |
---|---|
ISSN: | 0021-8995 1097-4628 1097-4628 |
DOI: | 10.1002/app.33054 |