High thermal conductive epoxy molding compound with thermal conductive pathway

The epoxy molding compound (EMC) with thermal conductive pathways was developed by structure designing. Three kinds of EMCs with different thermal conductivities were used in this investigation, specifically epoxy filled with Si₃N₄, filled with hybrid Si₃N₄/SiO₂, and filled with SiO₂. Improved therm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2009-08, Vol.113 (4), p.2117-2125
Hauptverfasser: Zeng, Jun, Fu, Renli, Shen, Yuan, He, Hong, Song, Xiufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2125
container_issue 4
container_start_page 2117
container_title Journal of applied polymer science
container_volume 113
creator Zeng, Jun
Fu, Renli
Shen, Yuan
He, Hong
Song, Xiufeng
description The epoxy molding compound (EMC) with thermal conductive pathways was developed by structure designing. Three kinds of EMCs with different thermal conductivities were used in this investigation, specifically epoxy filled with Si₃N₄, filled with hybrid Si₃N₄/SiO₂, and filled with SiO₂. Improved thermal conductivity was achieved by constructing thermal conductive pathways using high thermal conductivity EMC (Si₃N₄) in low thermal conductivity EMC (SiO₂). The morphology and microstructure of the top of EMC indicate that continuous network is formed by the filler which anticipates heat conductivity. The highest thermal conductivity of the EMC was 2.5 W/m K, reached when the volume fraction of EMC (Si₃N₄) is 80% (to compare with hybrid Si₃N₄/SiO₂ filled-EMC, the content of total fillers in the EMC was kept at 60 vol %). For a given volume fraction of EMC (Si₃N₄) in the EMC system, thermal conductivity values increase according to the order EMC (Si₃N₄) particles filled-EMC, hybrid Si₃N₄/SiO₂ filled-EMC, and EMC(SiO₂) particles filled-EMC. The coefficient of thermal expansion (CTE) decreases with increasing Si₃N₄ content in the whole filler. The values of CTE ranged between 23 x 10⁻⁶ and 30 x 10⁻⁶ K⁻¹. The investigated EMC samples have a flexural strength of about 36-39 MPa. The dielectric constant increases with Si₃N₄ content but generally remains at a low level (
doi_str_mv 10.1002/app.30045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901653724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901653724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3935-75aa69651f218976f5c4df43e8d194df23e0b5b0321f59f72d6381c153e777313</originalsourceid><addsrcrecordid>eNp1kEtPHDEQhK2ISCyEA78gc0GIw4DbHtvjI0IsICFY8UiOlvHYu4Z5Yc-y7L_HMMApOXVL9VWpuxDaBXwIGJMj3feHFOOC_UATwFLkBSflBpokDfJSSraJtmJ8xBiAYT5BV-d-vsiGhQ2NrjPTtdXSDP7FZrbvXtdZ09WVb-dJaPpu2VbZyg__xHs9LFZ6_Qv9dLqOdudzbqP76endyXl-eX12cXJ8mRsqKcsF05pLzsARKKXgjpmicgW1ZQUybYRa_MAeMCXgmHSCVJyWYIBRK4SgQLfR_pjbh-55aeOgGh-NrWvd2m4ZlcTAGRWkSOTBSJrQxRisU33wjQ5rBVi9V6ZSZeqjssTufabqaHTtgm6Nj98GArwsOIjEHY3cytd2_f9AdTybfSXno8PHwb5-O3R4UlxQwdTfqzN1N739I_jsRr3zv0fe6U7peUhX3N8SDDT9RQtRCvoGE2SSTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901653724</pqid></control><display><type>article</type><title>High thermal conductive epoxy molding compound with thermal conductive pathway</title><source>Access via Wiley Online Library</source><creator>Zeng, Jun ; Fu, Renli ; Shen, Yuan ; He, Hong ; Song, Xiufeng</creator><creatorcontrib>Zeng, Jun ; Fu, Renli ; Shen, Yuan ; He, Hong ; Song, Xiufeng</creatorcontrib><description>The epoxy molding compound (EMC) with thermal conductive pathways was developed by structure designing. Three kinds of EMCs with different thermal conductivities were used in this investigation, specifically epoxy filled with Si₃N₄, filled with hybrid Si₃N₄/SiO₂, and filled with SiO₂. Improved thermal conductivity was achieved by constructing thermal conductive pathways using high thermal conductivity EMC (Si₃N₄) in low thermal conductivity EMC (SiO₂). The morphology and microstructure of the top of EMC indicate that continuous network is formed by the filler which anticipates heat conductivity. The highest thermal conductivity of the EMC was 2.5 W/m K, reached when the volume fraction of EMC (Si₃N₄) is 80% (to compare with hybrid Si₃N₄/SiO₂ filled-EMC, the content of total fillers in the EMC was kept at 60 vol %). For a given volume fraction of EMC (Si₃N₄) in the EMC system, thermal conductivity values increase according to the order EMC (Si₃N₄) particles filled-EMC, hybrid Si₃N₄/SiO₂ filled-EMC, and EMC(SiO₂) particles filled-EMC. The coefficient of thermal expansion (CTE) decreases with increasing Si₃N₄ content in the whole filler. The values of CTE ranged between 23 x 10⁻⁶ and 30 x 10⁻⁶ K⁻¹. The investigated EMC samples have a flexural strength of about 36-39 MPa. The dielectric constant increases with Si₃N₄ content but generally remains at a low level (&lt;6, at 1 MHz). The average electrical volume resistivity of the EMC samples are higher than 1.4 x 10¹⁰ Ω m, the average electrical surface resistivity of the EMC samples are higher than 6.7 x 10¹⁴ Ω.</description><identifier>ISSN: 0021-8995</identifier><identifier>ISSN: 1097-4628</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.30045</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composites ; dielectric properties ; Exact sciences and technology ; Fillers ; Forms of application and semi-finished materials ; Heat transfer ; Molding compounds ; morphology ; networks ; Pathways ; Polymer industry, paints, wood ; Silicon dioxide ; Silicon nitride ; structure ; Technology of polymers ; Thermal conductivity ; thermal properties ; Volume fraction</subject><ispartof>Journal of applied polymer science, 2009-08, Vol.113 (4), p.2117-2125</ispartof><rights>Copyright © 2009 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3935-75aa69651f218976f5c4df43e8d194df23e0b5b0321f59f72d6381c153e777313</citedby><cites>FETCH-LOGICAL-c3935-75aa69651f218976f5c4df43e8d194df23e0b5b0321f59f72d6381c153e777313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.30045$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.30045$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21684617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Fu, Renli</creatorcontrib><creatorcontrib>Shen, Yuan</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><creatorcontrib>Song, Xiufeng</creatorcontrib><title>High thermal conductive epoxy molding compound with thermal conductive pathway</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>The epoxy molding compound (EMC) with thermal conductive pathways was developed by structure designing. Three kinds of EMCs with different thermal conductivities were used in this investigation, specifically epoxy filled with Si₃N₄, filled with hybrid Si₃N₄/SiO₂, and filled with SiO₂. Improved thermal conductivity was achieved by constructing thermal conductive pathways using high thermal conductivity EMC (Si₃N₄) in low thermal conductivity EMC (SiO₂). The morphology and microstructure of the top of EMC indicate that continuous network is formed by the filler which anticipates heat conductivity. The highest thermal conductivity of the EMC was 2.5 W/m K, reached when the volume fraction of EMC (Si₃N₄) is 80% (to compare with hybrid Si₃N₄/SiO₂ filled-EMC, the content of total fillers in the EMC was kept at 60 vol %). For a given volume fraction of EMC (Si₃N₄) in the EMC system, thermal conductivity values increase according to the order EMC (Si₃N₄) particles filled-EMC, hybrid Si₃N₄/SiO₂ filled-EMC, and EMC(SiO₂) particles filled-EMC. The coefficient of thermal expansion (CTE) decreases with increasing Si₃N₄ content in the whole filler. The values of CTE ranged between 23 x 10⁻⁶ and 30 x 10⁻⁶ K⁻¹. The investigated EMC samples have a flexural strength of about 36-39 MPa. The dielectric constant increases with Si₃N₄ content but generally remains at a low level (&lt;6, at 1 MHz). The average electrical volume resistivity of the EMC samples are higher than 1.4 x 10¹⁰ Ω m, the average electrical surface resistivity of the EMC samples are higher than 6.7 x 10¹⁴ Ω.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>dielectric properties</subject><subject>Exact sciences and technology</subject><subject>Fillers</subject><subject>Forms of application and semi-finished materials</subject><subject>Heat transfer</subject><subject>Molding compounds</subject><subject>morphology</subject><subject>networks</subject><subject>Pathways</subject><subject>Polymer industry, paints, wood</subject><subject>Silicon dioxide</subject><subject>Silicon nitride</subject><subject>structure</subject><subject>Technology of polymers</subject><subject>Thermal conductivity</subject><subject>thermal properties</subject><subject>Volume fraction</subject><issn>0021-8995</issn><issn>1097-4628</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPHDEQhK2ISCyEA78gc0GIw4DbHtvjI0IsICFY8UiOlvHYu4Z5Yc-y7L_HMMApOXVL9VWpuxDaBXwIGJMj3feHFOOC_UATwFLkBSflBpokDfJSSraJtmJ8xBiAYT5BV-d-vsiGhQ2NrjPTtdXSDP7FZrbvXtdZ09WVb-dJaPpu2VbZyg__xHs9LFZ6_Qv9dLqOdudzbqP76endyXl-eX12cXJ8mRsqKcsF05pLzsARKKXgjpmicgW1ZQUybYRa_MAeMCXgmHSCVJyWYIBRK4SgQLfR_pjbh-55aeOgGh-NrWvd2m4ZlcTAGRWkSOTBSJrQxRisU33wjQ5rBVi9V6ZSZeqjssTufabqaHTtgm6Nj98GArwsOIjEHY3cytd2_f9AdTybfSXno8PHwb5-O3R4UlxQwdTfqzN1N739I_jsRr3zv0fe6U7peUhX3N8SDDT9RQtRCvoGE2SSTA</recordid><startdate>20090815</startdate><enddate>20090815</enddate><creator>Zeng, Jun</creator><creator>Fu, Renli</creator><creator>Shen, Yuan</creator><creator>He, Hong</creator><creator>Song, Xiufeng</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20090815</creationdate><title>High thermal conductive epoxy molding compound with thermal conductive pathway</title><author>Zeng, Jun ; Fu, Renli ; Shen, Yuan ; He, Hong ; Song, Xiufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3935-75aa69651f218976f5c4df43e8d194df23e0b5b0321f59f72d6381c153e777313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>dielectric properties</topic><topic>Exact sciences and technology</topic><topic>Fillers</topic><topic>Forms of application and semi-finished materials</topic><topic>Heat transfer</topic><topic>Molding compounds</topic><topic>morphology</topic><topic>networks</topic><topic>Pathways</topic><topic>Polymer industry, paints, wood</topic><topic>Silicon dioxide</topic><topic>Silicon nitride</topic><topic>structure</topic><topic>Technology of polymers</topic><topic>Thermal conductivity</topic><topic>thermal properties</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Fu, Renli</creatorcontrib><creatorcontrib>Shen, Yuan</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><creatorcontrib>Song, Xiufeng</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Jun</au><au>Fu, Renli</au><au>Shen, Yuan</au><au>He, Hong</au><au>Song, Xiufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High thermal conductive epoxy molding compound with thermal conductive pathway</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2009-08-15</date><risdate>2009</risdate><volume>113</volume><issue>4</issue><spage>2117</spage><epage>2125</epage><pages>2117-2125</pages><issn>0021-8995</issn><issn>1097-4628</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>The epoxy molding compound (EMC) with thermal conductive pathways was developed by structure designing. Three kinds of EMCs with different thermal conductivities were used in this investigation, specifically epoxy filled with Si₃N₄, filled with hybrid Si₃N₄/SiO₂, and filled with SiO₂. Improved thermal conductivity was achieved by constructing thermal conductive pathways using high thermal conductivity EMC (Si₃N₄) in low thermal conductivity EMC (SiO₂). The morphology and microstructure of the top of EMC indicate that continuous network is formed by the filler which anticipates heat conductivity. The highest thermal conductivity of the EMC was 2.5 W/m K, reached when the volume fraction of EMC (Si₃N₄) is 80% (to compare with hybrid Si₃N₄/SiO₂ filled-EMC, the content of total fillers in the EMC was kept at 60 vol %). For a given volume fraction of EMC (Si₃N₄) in the EMC system, thermal conductivity values increase according to the order EMC (Si₃N₄) particles filled-EMC, hybrid Si₃N₄/SiO₂ filled-EMC, and EMC(SiO₂) particles filled-EMC. The coefficient of thermal expansion (CTE) decreases with increasing Si₃N₄ content in the whole filler. The values of CTE ranged between 23 x 10⁻⁶ and 30 x 10⁻⁶ K⁻¹. The investigated EMC samples have a flexural strength of about 36-39 MPa. The dielectric constant increases with Si₃N₄ content but generally remains at a low level (&lt;6, at 1 MHz). The average electrical volume resistivity of the EMC samples are higher than 1.4 x 10¹⁰ Ω m, the average electrical surface resistivity of the EMC samples are higher than 6.7 x 10¹⁴ Ω.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.30045</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2009-08, Vol.113 (4), p.2117-2125
issn 0021-8995
1097-4628
1097-4628
language eng
recordid cdi_proquest_miscellaneous_901653724
source Access via Wiley Online Library
subjects Applied sciences
Composites
dielectric properties
Exact sciences and technology
Fillers
Forms of application and semi-finished materials
Heat transfer
Molding compounds
morphology
networks
Pathways
Polymer industry, paints, wood
Silicon dioxide
Silicon nitride
structure
Technology of polymers
Thermal conductivity
thermal properties
Volume fraction
title High thermal conductive epoxy molding compound with thermal conductive pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20thermal%20conductive%20epoxy%20molding%20compound%20with%20thermal%20conductive%20pathway&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Zeng,%20Jun&rft.date=2009-08-15&rft.volume=113&rft.issue=4&rft.spage=2117&rft.epage=2125&rft.pages=2117-2125&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.30045&rft_dat=%3Cproquest_cross%3E901653724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901653724&rft_id=info:pmid/&rfr_iscdi=true