Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies

Flowerlike, spherical, and walnutlike NiO microspheres were respectively mixed with ionic liquid (IL) to form three stable composite films, which were used to immobilize hemoglobin (Hb) on carbon paste electrodes. Spectroscopic and electrochemical examinations revealed that the three NiO/IL composit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2011-06, Vol.26 (10), p.4082-4087
Hauptverfasser: Dong, Sheying, Zhang, Penghui, Liu, Hui, Li, Nan, Huang, Tinglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flowerlike, spherical, and walnutlike NiO microspheres were respectively mixed with ionic liquid (IL) to form three stable composite films, which were used to immobilize hemoglobin (Hb) on carbon paste electrodes. Spectroscopic and electrochemical examinations revealed that the three NiO/IL composites were biocompatible matrix for immobilizing Hb, which showed good stability and bioactivity. However, electrochemical studies demonstrated that flowerlike NiO microspheres were far more effective than the other two in adsorbing Hb and facilitating the electron transfer between Hb and underlying electrode, which resulted from its unique flower architecture and large surface area. With advantages of flowerlike NiO and ionic liquid, a pair of stable and well-defined quasi-reversible redox peaks of Hb were obtained with a formal potential of −0.275 V (vs. Ag/AgCl) in pH 7.0 buffer. Meantime, flowerlike NiO modified electrode showed better electrocatalytic activity toward hydrogen peroxide reduction with a high sensitivity (15.7 μA mM −1), low detection limit (0.68 μM) and small apparent Michaelis–Menten constant K M (0.18 mM). Flowerlike NiO could be a promising matrix for the fabrication of direct electrochemical biosensors in biomedical analysis.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2011.03.039