MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics
A triple-stage mass spectrometry (MS3)-based method is used to remove ratio interference, resulting in accurate, large-scale, multiplexed quantitative proteomics measurements using isobaric labeling. Also in this issue, Wenger et al . provide a different solution to the same problem. Quantitative ma...
Gespeichert in:
Veröffentlicht in: | Nature methods 2011-11, Vol.8 (11), p.937-940 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A triple-stage mass spectrometry (MS3)-based method is used to remove ratio interference, resulting in accurate, large-scale, multiplexed quantitative proteomics measurements using isobaric labeling. Also in this issue, Wenger
et al
. provide a different solution to the same problem.
Quantitative mass spectrometry–based proteomics is highly versatile but not easily multiplexed. Isobaric labeling strategies allow mass spectrometry–based multiplexed proteome quantification; however, ratio distortion owing to protein quantification interference is a common effect. We present a two-proteome model (mixture of human and yeast proteins) in a sixplex isobaric labeling system to fully document the interference effect, and we report that applying triple-stage mass spectrometry (MS3) almost completely eliminates interference. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/nmeth.1714 |