Induction of monocyte antitumor response by human cancer cells transduced with TNF-GFP fusion gene: possible implications for immunotherapy of cancer
This study was undertaken to determine how human pancreatic cancer (HPC-4) cells transduced with the TNF-GFP fusion gene (TLG) alter the antitumor response of human monocytes in vitro and whether they could act as an antitumor vaccine. In our model, HPC-4 cells were transduced with retroviral vector...
Gespeichert in:
Veröffentlicht in: | Folia histochemica et cytobiologica 2011-01, Vol.49 (3), p.512-520 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study was undertaken to determine how human pancreatic cancer (HPC-4) cells transduced with the TNF-GFP fusion gene (TLG) alter the antitumor response of human monocytes in vitro and whether they could act as an antitumor vaccine. In our model, HPC-4 cells were transduced with retroviral vector harboring TLG gene and designated as HPC-4(TLG). The TLG protein expression was confirmed by Western blot and flow cytometry analysis. Monocytes were co-cultured with transduced and control HPC-4 cells. The secretion of TNF, IL-10 and IL-12 was measured by ELISA. The cytotoxicity of monocytes against HPC-4 cells was determined by MTT test. The results show that the HPC-4(TLG) cells expressed membrane-bound, intracellular and secretory TLG protein. When cultured with HPC-4(TLG) cells, monocytes released a higher amount of TNF, but IL-10 and IL-12 secretion was inhibited. The pre-exposure of monocytes to HPC-4(TLG), but not to HPC-4, cells did not decrease TNF nor increase IL-10 production, thus not leading to monocyte deactivation. Also, the antitumor cytotoxicity of monocytes stimulated with HPC-4(TLG) was not downregulated, which occurred when non-transduced HPC-4 cells were used. In conclusion, compared to parental HPC-4 cells, TLG gene transduced HPC-4 cells induced stronger antitumor response of monocytes in vitro and prevented deactivation of monocytes. |
---|---|
ISSN: | 0239-8508 1897-5631 |
DOI: | 10.5603/FHC.2011.0072 |