Predicting Auditor Changes Using Financial Distress Variables And The Multiple Criteria Linear Programming (MCLP) And Other Data Mining Approaches

Our study evaluates a multiple criteria linear programming (MCLP) and other data mining approach es to predict auditor changes using a portfolio of financial statement measures to capture financial distress . The results of the MCLP approach and the other data mining approaches show that these metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied business research 2011-09, Vol.27 (5), p.73-84
Hauptverfasser: Kwak, Wikil, Eldridge, Susan, Shil, Yong, Kou, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our study evaluates a multiple criteria linear programming (MCLP) and other data mining approach es to predict auditor changes using a portfolio of financial statement measures to capture financial distress . The results of the MCLP approach and the other data mining approaches show that these methods perform reasonably well to predict auditor changes using financial distress variables. Overall accuracy rates are more than 60 percent, and true positive rates exceed 80 percent. Our study is designed to establish a starting point for auditor-change prediction using financial distress variables. Further research should incorporate additional explanatory variables and a longer study period to improve prediction rates.
ISSN:0892-7626
2157-8834
DOI:10.19030/jabr.v27i5.5597