A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures

Recently, we introduced a new force field (FF) to simulate transport properties of imidazolium-based room-temperature ionic liquids (RTILs) using a solid physical background. In the present work, we apply this FF to derive thermodynamic, structure, and transport properties of the mixtures of 1-butyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2011-01, Vol.13 (43), p.19345-19354
Hauptverfasser: CHABAN, Vitaly V, PREZHDO, Oleg V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, we introduced a new force field (FF) to simulate transport properties of imidazolium-based room-temperature ionic liquids (RTILs) using a solid physical background. In the present work, we apply this FF to derive thermodynamic, structure, and transport properties of the mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate, [BMIM][BF(4)], and acetonitrile (ACN) over the whole composition range. Three approaches to derive a force field are formulated based on different treatments of the ion-ion and ion-molecule Coulomb interactions: unit-charge, scaled-charge and floating-charge approaches. The simulation results are justified with the help of experimental data on specific density and shear viscosity for these mixtures. We find that a phenomenological account (particularly, a simple scaled-charge model) of electronic polarization leads to the best-performing model. Remarkably, its validity does not depend on the molar fraction of [BMIM][BF(4)] in the mixture. The derived FF is so far the first molecular model which is able to simulate all transport properties of the mixtures, comprising RTIL and ACN, fully realistically.
ISSN:1463-9076
1463-9084
DOI:10.1039/c1cp22188d