Light-Weight Flexible Carbon Nanotube Based Organic Composites with Large Thermoelectric Power Factors

Typical organic materials have low thermal conductivities that are best suited to thermoelectrics, but their poor electrical properties with strong adverse correlations have prevented them from being feasible candidates. Our composites, containing single-wall carbon nanotubes, poly(3,4-ethylenedioxy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2011-10, Vol.5 (10), p.7885-7892
Hauptverfasser: Yu, Choongho, Choi, Kyungwho, Yin, Liang, Grunlan, Jaime C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Typical organic materials have low thermal conductivities that are best suited to thermoelectrics, but their poor electrical properties with strong adverse correlations have prevented them from being feasible candidates. Our composites, containing single-wall carbon nanotubes, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and/or polyvinyl acetate, show thermopowers weakly correlated with electrical conductivities, resulting in large thermoelectric power factors in the in-plane direction of the composites, ∼160 μW/m·K2 at room temperature, which are orders of magnitude larger than those of typical polymer composites. Furthermore, their high electrical conductivities, ∼105 S/m at room temperature, make our composites very promising for various electronic applications. The optimum nanotube concentrations for better power factors were identified to be 60 wt % with 40 wt % polymers. It was noticed that high nanotube concentrations above 60 wt % decreased the electrical conductivity of the composites due to less effective nanotube dispersions. The thermal conductivities of our 60 wt % nanotube composites in the out-of-plane direction were measured to be 0.2–0.4 W/m·K at room temperature. The in-plane thermal conductivity and thermal contact conductance between nanotubes were also theoretically estimated.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn202868a