dopaminergic system and aggression in laying hens

The dopaminergic system is involved in the regulation of aggression in many species, especially via dopamine (DA) D1 and D2 receptor pathways. To investigate heritable differences in this regulation, 2 high aggressive strains [Dekalb XL (DXL) and low group egg productivity and survivability (LGPS)]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2011-11, Vol.90 (11), p.2440-2448
Hauptverfasser: Dennis, R.L, Cheng, H.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dopaminergic system is involved in the regulation of aggression in many species, especially via dopamine (DA) D1 and D2 receptor pathways. To investigate heritable differences in this regulation, 2 high aggressive strains [Dekalb XL (DXL) and low group egg productivity and survivability (LGPS)] and one low aggressive strain (low group egg productivity and survivability; HGPS) of laying hens were used in the study. The HGPS and LGPS lines were diversely selected using group selection for high and low group production and survivability. The DXL line is a commercial line selected through individual selection based on egg production. Heritable differences in aggressive propensity between the strains have been previously assessed. The birds were pair housed within the same strain and labeled as dominant or subordinate based on behavioral observation. For both experiments 1 and 2, behavioral analysis was performed on all 3 strains whereas neurotransmitter analysis was performed only on the most aggressive (DXL) and least aggressive (HGPS) strains. In experiment 1, the subordinate birds were treated with D1 agonist, D2 agonist, or saline controls (n = 12). In experiment 2, the dominant birds from a separate flock were treated with D1 antagonist, D2 antagonist, or saline controls (n = 12). Treatment-associated changes in aggressive behaviors and central neurotransmitters were measured. Aggression was increased in all strains in response to D1 agonism but increased only in the less aggressive HGPS birds with D2 agonism. Aggression was decreased and hypothalamic serotonin and epinephrine were increased in birds from all strains treated with D2 receptor antagonist. The D1 receptor antagonism elicited different behavioral and neurotransmitter responses based on the aggressive phenotype of the genetic strains. Aggressive strains DXL and LGPS but not the HGPS strain decreased aggressiveness following antagonism of the D1 receptor. The data show evidence for distinct neurotransmitter regulation of aggression in high and low aggressive strains of hens through different receptor systems. These chicken lines could provide new animal models for the biomedical investigation of the genetic basis of aggression.
ISSN:1525-3171
0032-5791
1525-3171
DOI:10.3382/ps.2011-01513