Composite Geochemical Database for Coalbed Methane Produced Water Quality in the Rocky Mountain Region

Coalbed methane (CBM) or coalbed natural gas (CBNG) is an unconventional natural gas resource with large reserves in the United States (US) and worldwide. Production is limited by challenges in the management of large volumes of produced water. Due to salinity of CBM produced water, it is commonly r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2011-09, Vol.45 (18), p.7655-7663
Hauptverfasser: Dahm, Katharine G, Guerra, Katie L, Xu, Pei, Drewes, Jörg E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coalbed methane (CBM) or coalbed natural gas (CBNG) is an unconventional natural gas resource with large reserves in the United States (US) and worldwide. Production is limited by challenges in the management of large volumes of produced water. Due to salinity of CBM produced water, it is commonly reinjected into the subsurface for disposal. Utilization of this nontraditional water source is hindered by limited knowledge of water quality. A composite geochemical database was created with 3255 CBM wellhead entries, covering four basins in the Rocky Mountain region, and resulting in information on 64 parameters and constituents. Database water composition is dominated by sodium bicarbonate and sodium chloride type waters with total dissolved solids concentrations of 150 to 39,260 mg/L. Constituents commonly exceeding standards for drinking, livestock, and irrigation water applications were total dissolved solids (TDS), sodium adsorption ratio (SAR), temperature, iron, and fluoride. Chemical trends in the basins are linked to the type of coal deposits, the rank of the coal deposits, and the proximity of the well to fresh water recharge. These water composition trends based on basin geology, hydrogeology, and methane generation pathway are relevant to predicting water quality compositions for beneficial use applications in CBM-producing basins worldwide.
ISSN:0013-936X
1520-5851
DOI:10.1021/es201021n