Implementing RapidArc into clinical routine: A comprehensive program from machine QA to TPS validation and patient QA

Purpose: With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2011-09, Vol.38 (9), p.5146-5166
Hauptverfasser: Van Esch, Ann, P. Huyskens, Dominique, Behrens, Claus F., Samsøe, Eva, Sjölin, Maria, Bjelkengren, Ulf, Sjöström, David, Clermont, Christian, Hambach, Lionel, Sergent, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto) IMAT solution. Methods: The program was developed and tested out for a Millennium120 MLC on iX Clinacs and a HighDefinition MLC on a Novalis TX, using a variety of measurement equipment including Gafchromic film, 2D ion chamber arrays (Seven29 and StarCheck, PTW, Freiburg, Germany) with inclinometer and Octavius phantom, the Delta4 systam (ScandiDos, Uppsala, Sweden) and the portal imager (EPID). First, a number of complementary machine QA tests were developed to monitor the correct interplay between the accelerating/decelerating gantry, the variable dose rate and the MLC position, straining the delivery to the maximum allowed limits. Second, a systematic approach to the validation of the dose calculation for RA was adopted, starting with static gantry and RA specific static MLC shapes and gradually moving to dynamic gantry, dynamic MLC shapes. RA plans were then optimized on a series of artificial structures created within the homogeneous Octavius phantom and within a heterogeneous lung phantom. These served the double purpose of testing the behavior of the optimization algorithm (PRO) as well as the precision of the forward dose calculation. Finally, patient QA on a series of clinical cases was performed with different methods. In addition to the well established in-phantom QA, we evaluated the portal dosimetry solution within the Varian approach. Results: For routine machine QA, the “Snooker Cue” test on the EPID proved to be the most sensitive to overall problem detection. It is also the most practical one. The “Twinkle” and “Sunrise” tests were useful to obtain well differentiated information on the individual treatment delivery components. The AAA8.9 dose calculations showed excellent agreement with all corresponding measurements, except in areas where the 2.5 mm fixed fluence resolution was insufficient to accurately model the tongue and groove effect or the dose through nearly closed opposing leafs. Such cases benefited from the increased fluence resolution in AAA10.0. In the clinical RA fields, these effects were smeared out spatially and the impact of the fluence resolution was considerably less pronounced. The RA plans on the artificial structure
ISSN:0094-2405
2473-4209
DOI:10.1118/1.3622672