Graph reductions, binary rank, and pivots in gene assembly

We describe a graph reduction operation, generalizing three graph reduction operations related to gene assembly in ciliates. The graph formalization of gene assembly considers three reduction rules, called the positive rule, double rule, and negative rule, each of which removes one or two vertices f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2011-10, Vol.159 (17), p.2117-2134
1. Verfasser: Pflueger, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a graph reduction operation, generalizing three graph reduction operations related to gene assembly in ciliates. The graph formalization of gene assembly considers three reduction rules, called the positive rule, double rule, and negative rule, each of which removes one or two vertices from a graph. The graph reductions we define consist precisely of all compositions of these rules. We study graph reductions in terms of the adjacency matrix of a graph over the finite field F 2 , and show that they are path invariant, in the sense that the result of a sequence of graph reductions depends only on the vertices removed. The binary rank of a graph is the rank of its adjacency matrix over F 2 . We show that the binary rank of a graph determines how many times the negative rule is applied in any sequence of positive, double, and negative rules reducing the graph to the empty graph, resolving two open problems posed by Harju, Li, and Petre. We also demonstrate the close relationship between graph reductions and the matrix pivot operation, both of which can be studied in terms of the poset of subsets of vertices of a graph that can be removed by a graph reduction. ► Graph reductions formalize a gene assembly process in strichotrichous ciliates. ► We give an abstract linear algebraic description of graph reductions. ► We prove a path-invariance property for graph reductions. ► Graph reductions can be studied using the binary rank of a graph and its subgraphs. ► We relate graph reductions to graph pivots.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2011.07.007