An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra

The nutrient concentrations and stoichiometry in a coastal bay/estuary are strongly influenced by the direct riverine discharge and the submarine groundwater discharge (SGD). To estimate the fluxes of submarine groundwater discharge into the Bamen Bay (BB) and the Wanquan River Estuary (WQ) of easte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2011-09, Vol.409 (19), p.3909-3918
Hauptverfasser: Su, Ni, Du, Jinzhou, Moore, Willard S., Liu, Sumei, Zhang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nutrient concentrations and stoichiometry in a coastal bay/estuary are strongly influenced by the direct riverine discharge and the submarine groundwater discharge (SGD). To estimate the fluxes of submarine groundwater discharge into the Bamen Bay (BB) and the Wanquan River Estuary (WQ) of eastern Hainan Island, China, the naturally occurring radium isotope ( 226Ra) was measured in water samples collected in the bay/estuary in August 2007 and 2008. Based on the distribution of 226Ra in the surface water, a 3-end-member mixing model was used to estimate the relative contributions of the sources to these systems. Flushing times of 3.9 ± 2.7 and 12.9 ± 9.3 days were estimated for the BB and WQ, respectively, to calculate the radium fluxes for each system. Based on the radium fluxes from groundwater discharge and the Ra isotopic compositions in the groundwater samples, the estimated SGD fluxes were 3.4 ± 5.0 m 3 s −1 in the BB and 0.08 ± 0.08 m 3 s −1 in the WQ, or 16% and 0.06%, respectively, of the local river discharge. Using this information, the nutrient fluxes from the submarine groundwater discharge seeping into the BB and WQ regions were estimated. In comparison with the nutrient fluxes from the local rivers, the SGD-derived nutrient fluxes played a vital role in controlling the nutrient budgets and stoichiometry in the study area, especially in the BB. ► Excess Ra was found in two estuaries. ► Submarine groundwater discharge was estimated. ► SGD-derived nutrient fluxes controlled the local nutrient budgets and stoichiometry. ► SGD with high N:P ratio impacted coastal ecosystems. ► These effects should be further investigated.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2011.06.017