Fungal Diversity of Norway Spruce Litter: Effects of Site Conditions and Premature Leaf Fall Caused By Bark Beetle Outbreak
Fungi play an important role in leaf litter decomposition due to their ability to break down the lignocellulose matrix, which other organisms are unable to digest. However, little is known regarding the factors affecting components of fungal diversity. Here, we quantified richness of internal fungi...
Gespeichert in:
Veröffentlicht in: | Microbial ecology 2008-08, Vol.56 (2), p.332-340 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fungi play an important role in leaf litter decomposition due to their ability to break down the lignocellulose matrix, which other organisms are unable to digest. However, little is known regarding the factors affecting components of fungal diversity. Here, we quantified richness of internal fungi in relation to litter nutrient and phenolic concentrations, sampling season (spring or fall), and premature leaf shedding due to low precipitation and infestation of bark beetles (mainly Ips typographus and Ips duplicatus). The study was conducted in 37-year-old Norway spruce [Picea abies (L.) Karst.] stands, with three plots each in mixed forest (MF) and coniferous forest (CF) site conditions in south-central Poland. Fifty-four species of sporulating fungi were identified in 2,330 freshly fallen needles sampled during 2003-2005, including 45 species in MF and 31 in CF. The significantly higher number of species in MF was likely related to moister conditions at that site. Among isolated fungi, 22% (12 species) were identified as endophytes of Norway spruce in prior studies. During spring of 2005, we found less than half the number of isolates and fungal species at each forest site as compared to fall for the two prior years. This pattern was observed in typical soil fungi (e.g., Penicillium daleae, Penicillium purpurogenum) and endophytes/epiphytes (e.g., Aureobasidium pullulans, Alternaria alternata, Cladosporium spp., and Lophodermium piceae). Premature shedding of needles was the most likely cause of this decline because it shortened the time period for fungi to infect green needles while on the tree. For all sites and sampling periods, richness of internal fungi was strongly and positively related to the age of freshly fallen litter (assessed using needle Ca concentration as a needle age tracer) and was also negatively related to litter phenolic concentration. Richness of internal fungi in freshly fallen litter may be adversely affected by low soil moisture status, natural inhibitors slowing fungal colonization (e.g., phenolics) and biotic (e.g., insect infestation) and abiotic (e.g., drought) factors that shorten leaf life span. |
---|---|
ISSN: | 0095-3628 1432-184X |
DOI: | 10.1007/s00248-007-9350-y |