Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae

Solar radiation is the energy source driving the metabolic activity of microorganisms able to photobiologically fixate carbon dioxide and convert solar energy into biofuels. Thus, careful radiation transfer analysis must be conducted in order to design and operate efficient photobioreactors. This re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 2011-11, Vol.112 (17), p.2639-2660
Hauptverfasser: Pilon, Laurent, Berberoğlu, Halil, Kandilian, Razmig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar radiation is the energy source driving the metabolic activity of microorganisms able to photobiologically fixate carbon dioxide and convert solar energy into biofuels. Thus, careful radiation transfer analysis must be conducted in order to design and operate efficient photobioreactors. This review paper first introduces light harvesting mechanisms used by microorganisms as well as photosynthesis and photobiological fuel production. It then provides a thorough and critical review of both experimental and modeling efforts focusing on radiation transfer in microalgae suspension. Experimental methods to determine the radiation characteristics of microalgae are presented. Methods for solving the radiation transfer equation in photobioreactors with or without bubbles are also discussed. Sample measurements and numerical solutions are provided. Finally, novel strategies for achieving optimum light delivery and maximizing sunlight utilization in photobioreactors are discussed including genetic engineering of microorganisms with truncated chlorophyll antenna. ► Experimental methods for determining radiation characteristics of microalgae. ► Modeling of radiation transfer in microalgae suspension. ► Illustrations of experimental measurements and numerical simulations. ►Discussion of novel strategies for achieving maximum performance.
ISSN:0022-4073
1879-1352
DOI:10.1016/j.jqsrt.2011.07.004