Exon 5 encoded domain is not required for the toxic function of mutant SOD1 but essential for the dismutase activity: identification and characterization of two new SOD1 mutations associated with familial amyotrophic lateral sclerosis
Two new mutations in the gene encoding cytoplasmic Cu,Zn superoxide dismutase (SOD1) have been discovered in patients with familial amyotrophic lateral sclerosis (FALS). These mutations result in the truncation of most of the polypeptide segment encoded by exon 5, one by the formation of a stop codo...
Gespeichert in:
Veröffentlicht in: | Neurogenetics 1997-05, Vol.1 (1), p.65-71 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two new mutations in the gene encoding cytoplasmic Cu,Zn superoxide dismutase (SOD1) have been discovered in patients with familial amyotrophic lateral sclerosis (FALS). These mutations result in the truncation of most of the polypeptide segment encoded by exon 5, one by the formation of a stop codon in codon 126 (L126Z) and the other by inducing alternative splicing in the mRNA (splicing junction mutation). These two mutants of SOD1 result in a FALS phenotype similar to that observed in patients with missense mutations in the SOD1 gene, establishing that exon 5 is not required for the novel toxic functions of mutant SOD1 associated with ALS. These mutant enzymes are present at very low levels in FALS patients, suggesting elevated toxicity compared to mutant enzymes with single site substitutions. This increased toxicity likely arises from the extreme structural and functional changes in the active site channel, beta-barrel fold, and dimer interface observed in the mutant enzymes, including the loss of native dismutase activity. In particular, the truncation of the polypeptide chain dramatically opens the active site channel, resulting in a marked increase in the accessibility and flexibility of the metal ions and side chain ligands of the enzyme active site. These structural changes are proposed to cause a decrease in substrate specificity and an increase in the catalysis of harmful chemical reactions such as peroxidation. |
---|---|
ISSN: | 1364-6745 1364-6753 |
DOI: | 10.1007/s100480050010 |