Combining in-situ proteolysis and microseed matrix screening to promote crystallization of PrP super(c)-nanobody complexes

Prion proteins (PrPs) are difficult to crystallize, probably due to their inherent flexibility. Several PrPs structures have been solved by nuclear magnetic resonance (NMR) techniques; however, only three structures were solved by X-ray crystallography. Here we combined in-situ proteolysis with auto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein engineering, design and selection design and selection, 2011-09, Vol.24 (9), p.737-741
Hauptverfasser: Abskharon, Romany NN, Soror, Sameh H, Pardon, Els, El Hassan, Hassan, Legname, Giuseppe, Steyaert, Jan, Wohlkonig, Alexandre
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prion proteins (PrPs) are difficult to crystallize, probably due to their inherent flexibility. Several PrPs structures have been solved by nuclear magnetic resonance (NMR) techniques; however, only three structures were solved by X-ray crystallography. Here we combined in-situ proteolysis with automated microseed matrix screening (MMS) to crystallize two different PrP super(C)-nanobody (Nb) complexes. Nanobodies are single-domain antibodies derived from heavy-chain-only antibodies of camelids. Initial crystallization screening conditions using in-situ proteolysis of mouse prion (23-230) in complex with a nanobody (Nb_PrP_01) gave thin needle aggregates, which were of poor diffraction quality. Next, we used these microcrystals as nucleants for automated MMS. Good-quality crystals were obtained from mouse PrP (89-230)/Nb_PrP_01, belonged to the monoclinic space group P 1 21 1, with unit-cell parameters a = 59.13, b = 63.80, c = 69.79 Aa, beta = 101.96 degree and diffracted to 2.1 Aa resolution using synchrotron radiation. Human PrP (90-231)/Nb_PrP_01 crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 131.86, b = 45.78, c = 45.09 Aa, beta = 96.23 degree and diffracted to 1.5 Aa resolution. This combined strategy benefits from the power of the MMS technique without suffering from the drawbacks of the in-situ proteolysis. It proved to be a successful strategy to crystallize PrP-nanobodies complexes and could be exploited for the crystallization of other difficult antigen-antibody complexes.
ISSN:1741-0126
1741-0134
DOI:10.1093/protein/gzr017