99mTc-d-penicillamine-glucuronide: synthesis, radiolabeling, in vitro and in vivo evaluation
The current study was aimed at synthesizing a glucuronide derivative of D-penicillamine (D-PA) to be used for imaging purposes. First of all, D-PA-glucuronide (D-PA-Glu) was synthesized by experimental treatments starting with uridine 5'-diphospho-glucuronosyltransferase enzyme rich microsome p...
Gespeichert in:
Veröffentlicht in: | Cancer biotherapy & radiopharmaceuticals 2011-10, Vol.26 (5), p.623-630 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The current study was aimed at synthesizing a glucuronide derivative of D-penicillamine (D-PA) to be used for imaging purposes. First of all, D-PA-glucuronide (D-PA-Glu) was synthesized by experimental treatments starting with uridine 5'-diphospho-glucuronosyltransferase enzyme rich microsome preparate. Then, the synthesized compound was labeled with technetium ((99m)Tc) by using a reduction method with stannous chloride. Quality controls were performed by using high-performance liquid chromatography and thin-layer radio chromatography (TLRC). Radiolabeling yield of (99m)Tc-D-PA-Glu was more than 98% according to TLRC results. In vitro evaluations of radiolabeled complexes were investigated on PC-3 human prostate cancer cells. (99m)Tc-D-PA-Glu exhibited more accumulation on PC-3 cells versus (99m)Tc-D-PA at 240 minutes. In order to determine its radiopharmaceutical potential, biodistribution studies were carried out in male Albino Wistar rats. The biodistribution results of (99m)Tc-D-PA-Glu, showed the highest uptake in prostate at 120 minutes postinjection with the main excretion route being through kidneys and bladder. (99m)Tc-D-PA-Glu and (99m)Tc-D-PA have exhibited different biodistribution results. |
---|---|
ISSN: | 1084-9785 1557-8852 |
DOI: | 10.1089/cbr.2010.0854 |