Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles

The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-10, Vol.58 (10), p.2056-2066
Hauptverfasser: Dave, J. K., Halldorsdottir, V. G., Eisenbrey, J. R., Ji-Bin Liu, McDonald, M. E., Dickie, K., Leung, C., Forsberg, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2066
container_issue 10
container_start_page 2056
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 58
creator Dave, J. K.
Halldorsdottir, V. G.
Eisenbrey, J. R.
Ji-Bin Liu
McDonald, M. E.
Dickie, K.
Leung, C.
Forsberg, F.
description The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p ; 0.790 (p
doi_str_mv 10.1109/TUFFC.2011.2056
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_898203098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6039996</ieee_id><sourcerecordid>898203098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZJzz0UigiUnpyMvmzpWJZsWgjNJTkLWZYaBVvaSPZC_vtqu9sUehmh0U-PmfcQ-kjgkhBQV_cPm836kgIhtYj2DVoRQUUjlRBv0QqkFA0DAifotJQnAMK5ou_RCSVKKtnBCj3_TDHEnSlh57Arc5jMHFLEyePhJZopWLzNrpSlFhwi3oU5J2zicLjsEl5KiL_w_OhwWfpHk6cqaHHFtykWh31OE64yOfVL34-unKN33ozFfTieZ-hhc32__t7c3t38WH-7bSzr2Nx4B71j3LZcSMnlIHs7ACUt88YKC8SDYMzyjjkLvHY7KjvLPCGDtbSnnp2hrwfdbU7PS11NT6FYN44murQUXQ2gwEDJSl78Rz6lJcc6nFbVM8krU6GrA1Q3KSU7r7e5mpVfNAG9z0L_yULvs9D7LOqPz0fZpZ_c8Mr_Nb8CX46AKdaMPptoQ_nHcaGoIPv5Ph244Jx7fW6BKaVa9hsxO5wY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900184983</pqid></control><display><type>article</type><title>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</title><source>IEEE Xplore</source><creator>Dave, J. K. ; Halldorsdottir, V. G. ; Eisenbrey, J. R. ; Ji-Bin Liu ; McDonald, M. E. ; Dickie, K. ; Leung, C. ; Forsberg, F.</creator><creatorcontrib>Dave, J. K. ; Halldorsdottir, V. G. ; Eisenbrey, J. R. ; Ji-Bin Liu ; McDonald, M. E. ; Dickie, K. ; Leung, C. ; Forsberg, F.</creatorcontrib><description>The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p &lt;; 0.001), whereas in vivo, the subharmonic signal tracked the LV pressures with r 2 &gt;; 0.790 (p &lt;; 0.001) showing a maximum error of 2.84 mmHg compared with the reference standard. In conclusion, a subharmonic ultrasound-based pressure estimation technique, which can accurately track left ventricular pressures, has been established.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.2056</identifier><identifier>PMID: 21989870</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Animals ; Biological and medical sciences ; Blood Pressure - physiology ; Cardiovascular system ; Catheters ; Contrast Media - chemistry ; Dogs ; Estimation ; Heart Ventricles - diagnostic imaging ; In vitro ; In vivo ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Microbubbles ; Phantoms ; Phantoms, Imaging ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Transducers ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Ultrasonography - instrumentation ; Ultrasonography - methods ; Ventricular Function</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-10, Vol.58 (10), p.2056-2066</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</citedby><cites>FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6039996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6039996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24592518$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21989870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dave, J. K.</creatorcontrib><creatorcontrib>Halldorsdottir, V. G.</creatorcontrib><creatorcontrib>Eisenbrey, J. R.</creatorcontrib><creatorcontrib>Ji-Bin Liu</creatorcontrib><creatorcontrib>McDonald, M. E.</creatorcontrib><creatorcontrib>Dickie, K.</creatorcontrib><creatorcontrib>Leung, C.</creatorcontrib><creatorcontrib>Forsberg, F.</creatorcontrib><title>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p &lt;; 0.001), whereas in vivo, the subharmonic signal tracked the LV pressures with r 2 &gt;; 0.790 (p &lt;; 0.001) showing a maximum error of 2.84 mmHg compared with the reference standard. In conclusion, a subharmonic ultrasound-based pressure estimation technique, which can accurately track left ventricular pressures, has been established.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure - physiology</subject><subject>Cardiovascular system</subject><subject>Catheters</subject><subject>Contrast Media - chemistry</subject><subject>Dogs</subject><subject>Estimation</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>In vitro</subject><subject>In vivo</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Microbubbles</subject><subject>Phantoms</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><subject>Ventricular Function</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaTZJzz0UigiUnpyMvmzpWJZsWgjNJTkLWZYaBVvaSPZC_vtqu9sUehmh0U-PmfcQ-kjgkhBQV_cPm836kgIhtYj2DVoRQUUjlRBv0QqkFA0DAifotJQnAMK5ou_RCSVKKtnBCj3_TDHEnSlh57Arc5jMHFLEyePhJZopWLzNrpSlFhwi3oU5J2zicLjsEl5KiL_w_OhwWfpHk6cqaHHFtykWh31OE64yOfVL34-unKN33ozFfTieZ-hhc32__t7c3t38WH-7bSzr2Nx4B71j3LZcSMnlIHs7ACUt88YKC8SDYMzyjjkLvHY7KjvLPCGDtbSnnp2hrwfdbU7PS11NT6FYN44murQUXQ2gwEDJSl78Rz6lJcc6nFbVM8krU6GrA1Q3KSU7r7e5mpVfNAG9z0L_yULvs9D7LOqPz0fZpZ_c8Mr_Nb8CX46AKdaMPptoQ_nHcaGoIPv5Ph244Jx7fW6BKaVa9hsxO5wY</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Dave, J. K.</creator><creator>Halldorsdottir, V. G.</creator><creator>Eisenbrey, J. R.</creator><creator>Ji-Bin Liu</creator><creator>McDonald, M. E.</creator><creator>Dickie, K.</creator><creator>Leung, C.</creator><creator>Forsberg, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</title><author>Dave, J. K. ; Halldorsdottir, V. G. ; Eisenbrey, J. R. ; Ji-Bin Liu ; McDonald, M. E. ; Dickie, K. ; Leung, C. ; Forsberg, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure - physiology</topic><topic>Cardiovascular system</topic><topic>Catheters</topic><topic>Contrast Media - chemistry</topic><topic>Dogs</topic><topic>Estimation</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>In vitro</topic><topic>In vivo</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Microbubbles</topic><topic>Phantoms</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dave, J. K.</creatorcontrib><creatorcontrib>Halldorsdottir, V. G.</creatorcontrib><creatorcontrib>Eisenbrey, J. R.</creatorcontrib><creatorcontrib>Ji-Bin Liu</creatorcontrib><creatorcontrib>McDonald, M. E.</creatorcontrib><creatorcontrib>Dickie, K.</creatorcontrib><creatorcontrib>Leung, C.</creatorcontrib><creatorcontrib>Forsberg, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dave, J. K.</au><au>Halldorsdottir, V. G.</au><au>Eisenbrey, J. R.</au><au>Ji-Bin Liu</au><au>McDonald, M. E.</au><au>Dickie, K.</au><au>Leung, C.</au><au>Forsberg, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>58</volume><issue>10</issue><spage>2056</spage><epage>2066</epage><pages>2056-2066</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p &lt;; 0.001), whereas in vivo, the subharmonic signal tracked the LV pressures with r 2 &gt;; 0.790 (p &lt;; 0.001) showing a maximum error of 2.84 mmHg compared with the reference standard. In conclusion, a subharmonic ultrasound-based pressure estimation technique, which can accurately track left ventricular pressures, has been established.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21989870</pmid><doi>10.1109/TUFFC.2011.2056</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-10, Vol.58 (10), p.2056-2066
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_898203098
source IEEE Xplore
subjects Acoustics
Animals
Biological and medical sciences
Blood Pressure - physiology
Cardiovascular system
Catheters
Contrast Media - chemistry
Dogs
Estimation
Heart Ventricles - diagnostic imaging
In vitro
In vivo
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Microbubbles
Phantoms
Phantoms, Imaging
Reproducibility of Results
Signal Processing, Computer-Assisted
Transducers
Ultrasonic imaging
Ultrasonic investigative techniques
Ultrasonography - instrumentation
Ultrasonography - methods
Ventricular Function
title Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20estimation%20of%20dynamic%20pressures%20in%20vitro%20and%20in%20vivo%20using%20the%20subharmonic%20response%20from%20microbubbles&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Dave,%20J.%20K.&rft.date=2011-10-01&rft.volume=58&rft.issue=10&rft.spage=2056&rft.epage=2066&rft.pages=2056-2066&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.2056&rft_dat=%3Cproquest_RIE%3E898203098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900184983&rft_id=info:pmid/21989870&rft_ieee_id=6039996&rfr_iscdi=true