Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles
The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-h...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2011-10, Vol.58 (10), p.2056-2066 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2066 |
---|---|
container_issue | 10 |
container_start_page | 2056 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 58 |
creator | Dave, J. K. Halldorsdottir, V. G. Eisenbrey, J. R. Ji-Bin Liu McDonald, M. E. Dickie, K. Leung, C. Forsberg, F. |
description | The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p ; 0.790 (p |
doi_str_mv | 10.1109/TUFFC.2011.2056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_898203098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6039996</ieee_id><sourcerecordid>898203098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpaTZJzz0UigiUnpyMvmzpWJZsWgjNJTkLWZYaBVvaSPZC_vtqu9sUehmh0U-PmfcQ-kjgkhBQV_cPm836kgIhtYj2DVoRQUUjlRBv0QqkFA0DAifotJQnAMK5ou_RCSVKKtnBCj3_TDHEnSlh57Arc5jMHFLEyePhJZopWLzNrpSlFhwi3oU5J2zicLjsEl5KiL_w_OhwWfpHk6cqaHHFtykWh31OE64yOfVL34-unKN33ozFfTieZ-hhc32__t7c3t38WH-7bSzr2Nx4B71j3LZcSMnlIHs7ACUt88YKC8SDYMzyjjkLvHY7KjvLPCGDtbSnnp2hrwfdbU7PS11NT6FYN44murQUXQ2gwEDJSl78Rz6lJcc6nFbVM8krU6GrA1Q3KSU7r7e5mpVfNAG9z0L_yULvs9D7LOqPz0fZpZ_c8Mr_Nb8CX46AKdaMPptoQ_nHcaGoIPv5Ph244Jx7fW6BKaVa9hsxO5wY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900184983</pqid></control><display><type>article</type><title>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</title><source>IEEE Xplore</source><creator>Dave, J. K. ; Halldorsdottir, V. G. ; Eisenbrey, J. R. ; Ji-Bin Liu ; McDonald, M. E. ; Dickie, K. ; Leung, C. ; Forsberg, F.</creator><creatorcontrib>Dave, J. K. ; Halldorsdottir, V. G. ; Eisenbrey, J. R. ; Ji-Bin Liu ; McDonald, M. E. ; Dickie, K. ; Leung, C. ; Forsberg, F.</creatorcontrib><description>The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p <; 0.001), whereas in vivo, the subharmonic signal tracked the LV pressures with r 2 >; 0.790 (p <; 0.001) showing a maximum error of 2.84 mmHg compared with the reference standard. In conclusion, a subharmonic ultrasound-based pressure estimation technique, which can accurately track left ventricular pressures, has been established.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2011.2056</identifier><identifier>PMID: 21989870</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustics ; Animals ; Biological and medical sciences ; Blood Pressure - physiology ; Cardiovascular system ; Catheters ; Contrast Media - chemistry ; Dogs ; Estimation ; Heart Ventricles - diagnostic imaging ; In vitro ; In vivo ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Microbubbles ; Phantoms ; Phantoms, Imaging ; Reproducibility of Results ; Signal Processing, Computer-Assisted ; Transducers ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Ultrasonography - instrumentation ; Ultrasonography - methods ; Ventricular Function</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-10, Vol.58 (10), p.2056-2066</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</citedby><cites>FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6039996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6039996$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24592518$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21989870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dave, J. K.</creatorcontrib><creatorcontrib>Halldorsdottir, V. G.</creatorcontrib><creatorcontrib>Eisenbrey, J. R.</creatorcontrib><creatorcontrib>Ji-Bin Liu</creatorcontrib><creatorcontrib>McDonald, M. E.</creatorcontrib><creatorcontrib>Dickie, K.</creatorcontrib><creatorcontrib>Leung, C.</creatorcontrib><creatorcontrib>Forsberg, F.</creatorcontrib><title>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p <; 0.001), whereas in vivo, the subharmonic signal tracked the LV pressures with r 2 >; 0.790 (p <; 0.001) showing a maximum error of 2.84 mmHg compared with the reference standard. In conclusion, a subharmonic ultrasound-based pressure estimation technique, which can accurately track left ventricular pressures, has been established.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood Pressure - physiology</subject><subject>Cardiovascular system</subject><subject>Catheters</subject><subject>Contrast Media - chemistry</subject><subject>Dogs</subject><subject>Estimation</subject><subject>Heart Ventricles - diagnostic imaging</subject><subject>In vitro</subject><subject>In vivo</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Microbubbles</subject><subject>Phantoms</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonography - instrumentation</subject><subject>Ultrasonography - methods</subject><subject>Ventricular Function</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkc1r3DAQxUVpaTZJzz0UigiUnpyMvmzpWJZsWgjNJTkLWZYaBVvaSPZC_vtqu9sUehmh0U-PmfcQ-kjgkhBQV_cPm836kgIhtYj2DVoRQUUjlRBv0QqkFA0DAifotJQnAMK5ou_RCSVKKtnBCj3_TDHEnSlh57Arc5jMHFLEyePhJZopWLzNrpSlFhwi3oU5J2zicLjsEl5KiL_w_OhwWfpHk6cqaHHFtykWh31OE64yOfVL34-unKN33ozFfTieZ-hhc32__t7c3t38WH-7bSzr2Nx4B71j3LZcSMnlIHs7ACUt88YKC8SDYMzyjjkLvHY7KjvLPCGDtbSnnp2hrwfdbU7PS11NT6FYN44murQUXQ2gwEDJSl78Rz6lJcc6nFbVM8krU6GrA1Q3KSU7r7e5mpVfNAG9z0L_yULvs9D7LOqPz0fZpZ_c8Mr_Nb8CX46AKdaMPptoQ_nHcaGoIPv5Ph244Jx7fW6BKaVa9hsxO5wY</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Dave, J. K.</creator><creator>Halldorsdottir, V. G.</creator><creator>Eisenbrey, J. R.</creator><creator>Ji-Bin Liu</creator><creator>McDonald, M. E.</creator><creator>Dickie, K.</creator><creator>Leung, C.</creator><creator>Forsberg, F.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111001</creationdate><title>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</title><author>Dave, J. K. ; Halldorsdottir, V. G. ; Eisenbrey, J. R. ; Ji-Bin Liu ; McDonald, M. E. ; Dickie, K. ; Leung, C. ; Forsberg, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-fe0be34c6458848d8bcd02163fac5c01f0533c473ec0463f7287c3f11dcc2b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood Pressure - physiology</topic><topic>Cardiovascular system</topic><topic>Catheters</topic><topic>Contrast Media - chemistry</topic><topic>Dogs</topic><topic>Estimation</topic><topic>Heart Ventricles - diagnostic imaging</topic><topic>In vitro</topic><topic>In vivo</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Microbubbles</topic><topic>Phantoms</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonography - instrumentation</topic><topic>Ultrasonography - methods</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dave, J. K.</creatorcontrib><creatorcontrib>Halldorsdottir, V. G.</creatorcontrib><creatorcontrib>Eisenbrey, J. R.</creatorcontrib><creatorcontrib>Ji-Bin Liu</creatorcontrib><creatorcontrib>McDonald, M. E.</creatorcontrib><creatorcontrib>Dickie, K.</creatorcontrib><creatorcontrib>Leung, C.</creatorcontrib><creatorcontrib>Forsberg, F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dave, J. K.</au><au>Halldorsdottir, V. G.</au><au>Eisenbrey, J. R.</au><au>Ji-Bin Liu</au><au>McDonald, M. E.</au><au>Dickie, K.</au><au>Leung, C.</au><au>Forsberg, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2011-10-01</date><risdate>2011</risdate><volume>58</volume><issue>10</issue><spage>2056</spage><epage>2066</epage><pages>2056-2066</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>The purpose of this study was to develop and validate a noninvasive pressure estimation technique based on subharmonic emissions from a commercially available ultrasound contrast agent and scanner, unlike other studies that have either adopted a single-element transducer approach and/ or use of in-house contrast agents. Ambient pressures were varied in a closed-loop flow system between 0 and 120 mmHg and were recorded by a solid-state pressure catheter as the reference standard. Simultaneously, the ultrasound scanner was operated in pulse inversion mode transmitting at 2.5 MHz, and the unprocessed RF data were captured at different incident acoustic pressures (from 76 to 897 kPa). The subharmonic data for each pulse were extracted using band-pass filtering with averaging, and subsequently processed to eliminate noise. The incident acoustic pressure most sensitive to ambient pressure fluctuations was determined, and then the ambient pressure was tracked over 20 s. In vivo validation of this technique was performed in the left ventricle (LV) of 2 canines. In vitro, the subharmonic signal could track ambient pressure values with r 2 = 0.922 (p <; 0.001), whereas in vivo, the subharmonic signal tracked the LV pressures with r 2 >; 0.790 (p <; 0.001) showing a maximum error of 2.84 mmHg compared with the reference standard. In conclusion, a subharmonic ultrasound-based pressure estimation technique, which can accurately track left ventricular pressures, has been established.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21989870</pmid><doi>10.1109/TUFFC.2011.2056</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011-10, Vol.58 (10), p.2056-2066 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_898203098 |
source | IEEE Xplore |
subjects | Acoustics Animals Biological and medical sciences Blood Pressure - physiology Cardiovascular system Catheters Contrast Media - chemistry Dogs Estimation Heart Ventricles - diagnostic imaging In vitro In vivo Investigative techniques, diagnostic techniques (general aspects) Medical sciences Microbubbles Phantoms Phantoms, Imaging Reproducibility of Results Signal Processing, Computer-Assisted Transducers Ultrasonic imaging Ultrasonic investigative techniques Ultrasonography - instrumentation Ultrasonography - methods Ventricular Function |
title | Noninvasive estimation of dynamic pressures in vitro and in vivo using the subharmonic response from microbubbles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T19%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20estimation%20of%20dynamic%20pressures%20in%20vitro%20and%20in%20vivo%20using%20the%20subharmonic%20response%20from%20microbubbles&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Dave,%20J.%20K.&rft.date=2011-10-01&rft.volume=58&rft.issue=10&rft.spage=2056&rft.epage=2066&rft.pages=2056-2066&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2011.2056&rft_dat=%3Cproquest_RIE%3E898203098%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900184983&rft_id=info:pmid/21989870&rft_ieee_id=6039996&rfr_iscdi=true |