Development of a mathematical model for evaluating the dynamics of normal and apoptotic Chinese hamster ovary cells
A metabolic flux based methodology was developed for modeling the metabolism of a Chinese hamster ovary cell line. The elimination of insignificant fluxes resulted in a simplified metabolic network which was the basis for modeling the significant metabolites. Employing kinetic rate expressions for g...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2011-09, Vol.27 (5), p.1197-1205 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A metabolic flux based methodology was developed for modeling the metabolism of a Chinese hamster ovary cell line. The elimination of insignificant fluxes resulted in a simplified metabolic network which was the basis for modeling the significant metabolites. Employing kinetic rate expressions for growing and non‐growing subpopulations, a logistic model was developed for cell growth and dynamic models were formulated to describe culture composition and monoclonal antibody (MAb) secretion. The model was validated for a range of nutrient concentrations. Good agreement was obtained between model predictions and experimental data. The ultimate goal of this study is to establish a comprehensive dynamic model which may be used for model‐based optimization of the cell culture for MAb production in both batch and fed‐batch systems. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 |
---|---|
ISSN: | 8756-7938 1520-6033 1520-6033 |
DOI: | 10.1002/btpr.647 |