Effect of glare on reaction time for peripheral vision at mesopic adaptation
When a bright light is present in the field of view, visibility is dramatically reduced. Many studies have investigated the effect of glare on visibility considering foveal vision. However, the effects on peripheral vision have received little attention. In a previous work [J. Opt. Soc. Am. A 25, 17...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2011-10, Vol.28 (10), p.2187-2191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When a bright light is present in the field of view, visibility is dramatically reduced. Many studies have investigated the effect of glare on visibility considering foveal vision. However, the effects on peripheral vision have received little attention. In a previous work [J. Opt. Soc. Am. A 25, 1790 (2008)], we showed that the effect of glare on reaction time (RT) for foveal vision at mesopic adaptation depends on the stimulus spatial frequency. In this work, we extend this study to peripheral vision. We measured the RT of achromatic sinusoidal gratings as a function of contrast for a range of spatial frequency, and eccentricity, and for two glare levels, in addition to the no-glare condition. Data were fitted with Piéron's law, following a linear relationship. We found that glare increases the slope of these lines for all conditions. These slopes seem to depend critically on eccentricity for 4 cycles/degree (c/deg), but not for 1 and 2 c/deg. We explain our results in terms of the contrast sensitivity (gain) of the underlying detection mechanisms. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.28.002187 |