Rotational predissociation of extremely weakly bound atom-molecule complexes produced by Feshbach resonance association
We study the rotational predissociation of atom-molecule complexes with very small binding energy. Such complexes can be produced by Feshbach resonance association of ultracold molecules with ultracold atoms. Numerical calculations of the predissociation lifetimes based on the computation of the ene...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2011-09, Vol.135 (12), p.124313-124313-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the rotational predissociation of atom-molecule complexes with very small binding energy. Such complexes can be produced by Feshbach resonance association of ultracold molecules with ultracold atoms. Numerical calculations of the predissociation lifetimes based on the computation of the energy dependence of the scattering matrix elements become inaccurate when the binding energy is smaller than the energy width of the predissociating state. We derive expressions that represent accurately the predissociation lifetimes in terms of the real and imaginary parts of the scattering length and effective range for molecules in an excited rotational state. Our results show that the predissociation lifetimes are the longest when the binding energy is positive, i.e., when the predissociating state is just above the excited state threshold. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.3641643 |