Time-reversal multiple signal classification in case of noise: A phase-coherent approach

The problem of locating point-like targets beyond the classical resolution limit is revisited. Although time-reversal MUltiple SIgnal Classification (MUSIC) is known for its super-resolution ability in localization of point scatterers, in the presence of noise this super-resolution property will eas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2011-10, Vol.130 (4), p.2024-2034
Hauptverfasser: Asgedom, Endrias G., Gelius, Leiv-J., Austeng, Andreas, Holm, Sverre, Tygel, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of locating point-like targets beyond the classical resolution limit is revisited. Although time-reversal MUltiple SIgnal Classification (MUSIC) is known for its super-resolution ability in localization of point scatterers, in the presence of noise this super-resolution property will easily break down. In this paper a phase-coherent version of time-reversal MUSIC is proposed, which can overcome this fundamental limit. The algorithm has been tested employing synthetic multiple scattering data based on the Foldy-Lax model, as well as experimental ultrasound data acquired in a water tank. Using a limited frequency band, it was demonstrated that the phase-coherent MUSIC algorithm has the potential of giving significantly better resolved scatterer locations than standard time-reversal MUSIC.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.3626526