S(T) = 22 [Mn10] supertetrahedral building-block to design extended magnetic networks
The controlled organization of high-spin complexes, eventually single-molecule magnets, is a great challenge in molecular sciences to probe the possibility to design sophisticated magnetic systems to address a large quantity of magnetic information. The coordination chemistry is a tool of choice to...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2011-09, Vol.50 (17), p.8580-8587 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The controlled organization of high-spin complexes, eventually single-molecule magnets, is a great challenge in molecular sciences to probe the possibility to design sophisticated magnetic systems to address a large quantity of magnetic information. The coordination chemistry is a tool of choice to make such materials. In this work, high-spin S(T) = 22 [Mn(10)] complexes, such as [Mn(III)(6)Mn(II)(4)(L(1))(6)(μ(4)-O)(4)(μ(3)-N(3))(4)(CH(3)CN)(11)(H(2)O)]·(ClO(4))(2)·(CH(3)CN)(8.5) (1), have been assembled using (i) 1,3-propanediol derivatives as chelating ligands to form the [Mn(10)] core units and (ii) dicyanamide or azide anions as linkers to synthesize the first 2D and 3D [Mn(10)]-based networks: [Mn(III)(6)Mn(II)(4)(L(2))(6)(μ(3)-N(3))(4)(μ(4)-O)(4)(CH(3)OH)(4)(dca)(2)] (2) and [Mn(III)(6)Mn(II)(4)(L(3))(6)(μ(3)-N(3))(4)(μ(4)-O)(4)(N(3))(2)]·(CH(3)OH)(4) (3). The synthesis of these compounds is reported together with their single-crystal X-ray structures and magnetic properties supported by DFT calculations. In the reported synthetic conditions, the stability of the [Mn(10)] complex is remarkably good that allows us to imagine many new materials combining these high-spin moieties and other diamagnetic but also paramagnetic linkers to design for example ordered magnets. |
---|---|
ISSN: | 1520-510X |
DOI: | 10.1021/ic201154n |