Offline and online identification of hidden semi-Markov models
We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identificati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2005-08, Vol.53 (8), p.2658-2663 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2663 |
---|---|
container_issue | 8 |
container_start_page | 2658 |
container_title | IEEE transactions on signal processing |
container_volume | 53 |
creator | Azimi, M. Nasiopoulos, P. Ward, R.K. |
description | We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively. |
doi_str_mv | 10.1109/TSP.2005.850344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896238244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1468462</ieee_id><sourcerecordid>2361910181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgBdRsFbPHrwsgnraNslOXhdBii-oVLCCt5DuJpi6u6mbreC_N3ULBQ-eZpj5Zpj5kuQUoxHGSI7nL88jghAdCYpygL1kgCXgDAFn-zFHNM-o4G-HyVEIS4QwgGSD5HpmbeUak-qmTH3zm7rSNJ2zrtCd803qbfruylhLg6ld9qTbD_-V1r40VThODqyugjnZxmHyenc7nzxk09n94-RmmhW5wF2GeckAAUOSiMKUlEskLV8IjQogFJdAkBXxOmzppsapMdLG1oIAzRnR-TC56veuWv-5NqFTtQuFqSrdGL8OSkhGckEAInn5L0lEdMQZj-D5H3Dp120Tv1CCSZwDxyJC4x4qWh9Ca6xata7W7bfCSG20q6hdbbSrXnucuNiu1aHQlW11U7iwG2MSBCYycmc954wxuzYwAfGVH6RHiIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869134718</pqid></control><display><type>article</type><title>Offline and online identification of hidden semi-Markov models</title><source>IEEE Electronic Library (IEL)</source><creator>Azimi, M. ; Nasiopoulos, P. ; Ward, R.K.</creator><creatorcontrib>Azimi, M. ; Nasiopoulos, P. ; Ward, R.K.</creatorcontrib><description>We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2005.850344</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Adaptive algorithms ; Algorithms ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Expectation maximization (EM) algorithm ; Hidden Markov models ; Information, signal and communications theory ; Maximum likelihood estimation ; On-line systems ; Online ; Parameter estimation ; Parameter identification ; Power engineering and energy ; Predictive models ; recursive maximum likelihood (RML) ; recursive prediction error (RPE) ; semi-Markov models ; Signal and communications theory ; Signal processing ; Signal, noise ; Speech processing ; State estimation ; Telecommunications and information theory ; Tensile stress ; Transition probabilities</subject><ispartof>IEEE transactions on signal processing, 2005-08, Vol.53 (8), p.2658-2663</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</citedby><cites>FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1468462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1468462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16948129$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Azimi, M.</creatorcontrib><creatorcontrib>Nasiopoulos, P.</creatorcontrib><creatorcontrib>Ward, R.K.</creatorcontrib><title>Offline and online identification of hidden semi-Markov models</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.</description><subject>Adaptive algorithm</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Expectation maximization (EM) algorithm</subject><subject>Hidden Markov models</subject><subject>Information, signal and communications theory</subject><subject>Maximum likelihood estimation</subject><subject>On-line systems</subject><subject>Online</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Power engineering and energy</subject><subject>Predictive models</subject><subject>recursive maximum likelihood (RML)</subject><subject>recursive prediction error (RPE)</subject><subject>semi-Markov models</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Speech processing</subject><subject>State estimation</subject><subject>Telecommunications and information theory</subject><subject>Tensile stress</subject><subject>Transition probabilities</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEQgBdRsFbPHrwsgnraNslOXhdBii-oVLCCt5DuJpi6u6mbreC_N3ULBQ-eZpj5Zpj5kuQUoxHGSI7nL88jghAdCYpygL1kgCXgDAFn-zFHNM-o4G-HyVEIS4QwgGSD5HpmbeUak-qmTH3zm7rSNJ2zrtCd803qbfruylhLg6ld9qTbD_-V1r40VThODqyugjnZxmHyenc7nzxk09n94-RmmhW5wF2GeckAAUOSiMKUlEskLV8IjQogFJdAkBXxOmzppsapMdLG1oIAzRnR-TC56veuWv-5NqFTtQuFqSrdGL8OSkhGckEAInn5L0lEdMQZj-D5H3Dp120Tv1CCSZwDxyJC4x4qWh9Ca6xata7W7bfCSG20q6hdbbSrXnucuNiu1aHQlW11U7iwG2MSBCYycmc954wxuzYwAfGVH6RHiIM</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Azimi, M.</creator><creator>Nasiopoulos, P.</creator><creator>Ward, R.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050801</creationdate><title>Offline and online identification of hidden semi-Markov models</title><author>Azimi, M. ; Nasiopoulos, P. ; Ward, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Expectation maximization (EM) algorithm</topic><topic>Hidden Markov models</topic><topic>Information, signal and communications theory</topic><topic>Maximum likelihood estimation</topic><topic>On-line systems</topic><topic>Online</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Power engineering and energy</topic><topic>Predictive models</topic><topic>recursive maximum likelihood (RML)</topic><topic>recursive prediction error (RPE)</topic><topic>semi-Markov models</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Speech processing</topic><topic>State estimation</topic><topic>Telecommunications and information theory</topic><topic>Tensile stress</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azimi, M.</creatorcontrib><creatorcontrib>Nasiopoulos, P.</creatorcontrib><creatorcontrib>Ward, R.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azimi, M.</au><au>Nasiopoulos, P.</au><au>Ward, R.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offline and online identification of hidden semi-Markov models</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-08-01</date><risdate>2005</risdate><volume>53</volume><issue>8</issue><spage>2658</spage><epage>2663</epage><pages>2658-2663</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2005.850344</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2005-08, Vol.53 (8), p.2658-2663 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_896238244 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithm Adaptive algorithms Algorithms Applied sciences Detection, estimation, filtering, equalization, prediction Exact sciences and technology Expectation maximization (EM) algorithm Hidden Markov models Information, signal and communications theory Maximum likelihood estimation On-line systems Online Parameter estimation Parameter identification Power engineering and energy Predictive models recursive maximum likelihood (RML) recursive prediction error (RPE) semi-Markov models Signal and communications theory Signal processing Signal, noise Speech processing State estimation Telecommunications and information theory Tensile stress Transition probabilities |
title | Offline and online identification of hidden semi-Markov models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offline%20and%20online%20identification%20of%20hidden%20semi-Markov%20models&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Azimi,%20M.&rft.date=2005-08-01&rft.volume=53&rft.issue=8&rft.spage=2658&rft.epage=2663&rft.pages=2658-2663&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2005.850344&rft_dat=%3Cproquest_RIE%3E2361910181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869134718&rft_id=info:pmid/&rft_ieee_id=1468462&rfr_iscdi=true |