Offline and online identification of hidden semi-Markov models

We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-08, Vol.53 (8), p.2658-2663
Hauptverfasser: Azimi, M., Nasiopoulos, P., Ward, R.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2663
container_issue 8
container_start_page 2658
container_title IEEE transactions on signal processing
container_volume 53
creator Azimi, M.
Nasiopoulos, P.
Ward, R.K.
description We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.
doi_str_mv 10.1109/TSP.2005.850344
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_896238244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1468462</ieee_id><sourcerecordid>2361910181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQgBdRsFbPHrwsgnraNslOXhdBii-oVLCCt5DuJpi6u6mbreC_N3ULBQ-eZpj5Zpj5kuQUoxHGSI7nL88jghAdCYpygL1kgCXgDAFn-zFHNM-o4G-HyVEIS4QwgGSD5HpmbeUak-qmTH3zm7rSNJ2zrtCd803qbfruylhLg6ld9qTbD_-V1r40VThODqyugjnZxmHyenc7nzxk09n94-RmmhW5wF2GeckAAUOSiMKUlEskLV8IjQogFJdAkBXxOmzppsapMdLG1oIAzRnR-TC56veuWv-5NqFTtQuFqSrdGL8OSkhGckEAInn5L0lEdMQZj-D5H3Dp120Tv1CCSZwDxyJC4x4qWh9Ca6xata7W7bfCSG20q6hdbbSrXnucuNiu1aHQlW11U7iwG2MSBCYycmc954wxuzYwAfGVH6RHiIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869134718</pqid></control><display><type>article</type><title>Offline and online identification of hidden semi-Markov models</title><source>IEEE Electronic Library (IEL)</source><creator>Azimi, M. ; Nasiopoulos, P. ; Ward, R.K.</creator><creatorcontrib>Azimi, M. ; Nasiopoulos, P. ; Ward, R.K.</creatorcontrib><description>We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2005.850344</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithm ; Adaptive algorithms ; Algorithms ; Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Expectation maximization (EM) algorithm ; Hidden Markov models ; Information, signal and communications theory ; Maximum likelihood estimation ; On-line systems ; Online ; Parameter estimation ; Parameter identification ; Power engineering and energy ; Predictive models ; recursive maximum likelihood (RML) ; recursive prediction error (RPE) ; semi-Markov models ; Signal and communications theory ; Signal processing ; Signal, noise ; Speech processing ; State estimation ; Telecommunications and information theory ; Tensile stress ; Transition probabilities</subject><ispartof>IEEE transactions on signal processing, 2005-08, Vol.53 (8), p.2658-2663</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</citedby><cites>FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1468462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1468462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16948129$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Azimi, M.</creatorcontrib><creatorcontrib>Nasiopoulos, P.</creatorcontrib><creatorcontrib>Ward, R.K.</creatorcontrib><title>Offline and online identification of hidden semi-Markov models</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.</description><subject>Adaptive algorithm</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Expectation maximization (EM) algorithm</subject><subject>Hidden Markov models</subject><subject>Information, signal and communications theory</subject><subject>Maximum likelihood estimation</subject><subject>On-line systems</subject><subject>Online</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Power engineering and energy</subject><subject>Predictive models</subject><subject>recursive maximum likelihood (RML)</subject><subject>recursive prediction error (RPE)</subject><subject>semi-Markov models</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Speech processing</subject><subject>State estimation</subject><subject>Telecommunications and information theory</subject><subject>Tensile stress</subject><subject>Transition probabilities</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kEtLAzEQgBdRsFbPHrwsgnraNslOXhdBii-oVLCCt5DuJpi6u6mbreC_N3ULBQ-eZpj5Zpj5kuQUoxHGSI7nL88jghAdCYpygL1kgCXgDAFn-zFHNM-o4G-HyVEIS4QwgGSD5HpmbeUak-qmTH3zm7rSNJ2zrtCd803qbfruylhLg6ld9qTbD_-V1r40VThODqyugjnZxmHyenc7nzxk09n94-RmmhW5wF2GeckAAUOSiMKUlEskLV8IjQogFJdAkBXxOmzppsapMdLG1oIAzRnR-TC56veuWv-5NqFTtQuFqSrdGL8OSkhGckEAInn5L0lEdMQZj-D5H3Dp120Tv1CCSZwDxyJC4x4qWh9Ca6xata7W7bfCSG20q6hdbbSrXnucuNiu1aHQlW11U7iwG2MSBCYycmc954wxuzYwAfGVH6RHiIM</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Azimi, M.</creator><creator>Nasiopoulos, P.</creator><creator>Ward, R.K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050801</creationdate><title>Offline and online identification of hidden semi-Markov models</title><author>Azimi, M. ; Nasiopoulos, P. ; Ward, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-17d640460928ced57909f7b8a0c4251d420f85871f58a0c75ee9fc42b245362a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Expectation maximization (EM) algorithm</topic><topic>Hidden Markov models</topic><topic>Information, signal and communications theory</topic><topic>Maximum likelihood estimation</topic><topic>On-line systems</topic><topic>Online</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Power engineering and energy</topic><topic>Predictive models</topic><topic>recursive maximum likelihood (RML)</topic><topic>recursive prediction error (RPE)</topic><topic>semi-Markov models</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Speech processing</topic><topic>State estimation</topic><topic>Telecommunications and information theory</topic><topic>Tensile stress</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azimi, M.</creatorcontrib><creatorcontrib>Nasiopoulos, P.</creatorcontrib><creatorcontrib>Ward, R.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azimi, M.</au><au>Nasiopoulos, P.</au><au>Ward, R.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Offline and online identification of hidden semi-Markov models</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-08-01</date><risdate>2005</risdate><volume>53</volume><issue>8</issue><spage>2658</spage><epage>2663</epage><pages>2658-2663</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2005.850344</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2005-08, Vol.53 (8), p.2658-2663
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_896238244
source IEEE Electronic Library (IEL)
subjects Adaptive algorithm
Adaptive algorithms
Algorithms
Applied sciences
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Expectation maximization (EM) algorithm
Hidden Markov models
Information, signal and communications theory
Maximum likelihood estimation
On-line systems
Online
Parameter estimation
Parameter identification
Power engineering and energy
Predictive models
recursive maximum likelihood (RML)
recursive prediction error (RPE)
semi-Markov models
Signal and communications theory
Signal processing
Signal, noise
Speech processing
State estimation
Telecommunications and information theory
Tensile stress
Transition probabilities
title Offline and online identification of hidden semi-Markov models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Offline%20and%20online%20identification%20of%20hidden%20semi-Markov%20models&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Azimi,%20M.&rft.date=2005-08-01&rft.volume=53&rft.issue=8&rft.spage=2658&rft.epage=2663&rft.pages=2658-2663&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2005.850344&rft_dat=%3Cproquest_RIE%3E2361910181%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869134718&rft_id=info:pmid/&rft_ieee_id=1468462&rfr_iscdi=true