Offline and online identification of hidden semi-Markov models
We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identificati...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2005-08, Vol.53 (8), p.2658-2663 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2005.850344 |