The reconstruction of discontinuous piecewise polynomial signals

The Gibbs phenomenon was recognized as early as 1898 by Michelson and Stratton. Gibbs oscillations occur during the reconstruction of discontinuous functions from a truncated periodic series expansion, such as a truncated Fourier series expansion or a truncated discrete Fourier transform expansion....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-07, Vol.53 (7), p.2603-2607
1. Verfasser: MacInnes, C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Gibbs phenomenon was recognized as early as 1898 by Michelson and Stratton. Gibbs oscillations occur during the reconstruction of discontinuous functions from a truncated periodic series expansion, such as a truncated Fourier series expansion or a truncated discrete Fourier transform expansion. Recent theoretical results have shown that Gibbs oscillations can be removed from the truncated Fourier series representation of a function that has discontinuities. This is accomplished by a change of basis to the set of orthogonal polynomials called the Gegenbauer polynomials. In this correspondence, a straightforward numerical procedure for the denoising of piecewise polynomial signals is developed. Examples using truncated Fourier series and discrete Fourier transform (DFT) series demonstrate the effectiveness of the numerical procedure.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2005.849217