Privacy-preserving distributed mining of association rules on horizontally partitioned data

Data mining can extract important knowledge from large data collections ut sometimes these collections are split among various parties. Privacy concerns may prevent the parties from directly sharing the data and some types of information about the data. We address secure mining of association rules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2004-09, Vol.16 (9), p.1026-1037
Hauptverfasser: Kantarcioglu, M., Clifton, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data mining can extract important knowledge from large data collections ut sometimes these collections are split among various parties. Privacy concerns may prevent the parties from directly sharing the data and some types of information about the data. We address secure mining of association rules over horizontally partitioned data. The methods incorporate cryptographic techniques to minimize the information shared, while adding little overhead to the mining task.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2004.45