Analyzing complex networks evolution through Information Theory quantifiers

A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen–Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2011-01, Vol.375 (4), p.801-804
Hauptverfasser: Carpi, Laura C., Rosso, Osvaldo A., Saco, Patricia M., Ravetti, Martín Gómez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen–Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts–Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2010.12.038