Control of series active power filters compensating for source voltage unbalance and current harmonics
In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics in series-type active power filter systems combined with shunt passive filters is proposed, which focuses on reducing the delay time effect required to generate the reference voltage. Using digital...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2004-02, Vol.51 (1), p.132-139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics in series-type active power filter systems combined with shunt passive filters is proposed, which focuses on reducing the delay time effect required to generate the reference voltage. Using digital all-pass filters, the positive voltage sequence component out of the unbalanced source voltage is derived. The all-pass filter can give a desired phase shift and no magnitude reduction, unlike conventional low-or high-pass filters. Based on this positive-sequence component, the source phase angle and the reference voltage for compensation are derived. This method is easier to implement and to tune controller gains. In order to reduce the delay time effect in the voltage control loop, the reference voltage is predicted a sampling period ahead. The validity of the proposed control scheme has been verified by experimental results. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2003.822040 |