Finite-element method modeling of superconductors: from 2-D to 3-D
A three-dimensional (3-D) numerical modeling technique for solving problems involving superconducting materials is presented. The model is implemented in finite-element method software and is based on a recently developed 3-D formulation for general electromagnetic problems with solid conductors. It...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2005-03, Vol.15 (1), p.17-25 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A three-dimensional (3-D) numerical modeling technique for solving problems involving superconducting materials is presented. The model is implemented in finite-element method software and is based on a recently developed 3-D formulation for general electromagnetic problems with solid conductors. It has been adapted for modeling of superconductors with nonlinear resistivity in 3-D, characterized by a power-law E-J relation. It has first been compared with an existing and verified two-dimensional (2-D) model: Compared are the current density distribution inside the conductors and the self-field ac losses for different applied transport currents. Second, the model has been tested for computing the current distribution with typical 3-D geometries, such as corner-shaped and twisted superconductors. Finally, it has been used with two superconducting filaments in the presence of external magnetic field for verifying the existence of coupling currents. This effect deals with the finite length of the conductors and cannot be taken into account by 2-D models. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2004.839774 |