Studies of the pulse charge of lead-acid batteries for photovoltaic applications Part IV. Pulse charge of the negative plate

The paper discusses the influence of the state of charge and pulse charge frequency on the mechanism of the lead-acid battery recharge with pulse current. The data from the pulse charge transients of the negative plate potential at various frequencies show that a decrease of the pulse charge frequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2009-06, Vol.191 (1), p.82-90
Hauptverfasser: KIRCHEV, Angel, MATTERA, Florence, LEMAIRE, Elisabeth, DONG, Kien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper discusses the influence of the state of charge and pulse charge frequency on the mechanism of the lead-acid battery recharge with pulse current. The data from the pulse charge transients of the negative plate potential at various frequencies show that a decrease of the pulse charge frequency keeping constant average pulse current can impede the charge reaction leading to earlier start of the hydrogen evolution reaction. The dependence of the electrochemical double layer (EDL) capacitance on the state of charge was estimated both during the charge and the discharge using electrochemical impedance spectroscopy measurements at open circuit, followed by equivalent circuit modelling. These data were used to derive the dependence of the average double layer current on SOC and pulse charge frequency. The results show that in the end of the charge almost all of the charge proceeds with the participation of EDL in a certain pulse frequency domain. Using the data from the impedance measurements the optimal pulse charge frequencies were predicted, considering the existence of "electrochemical resonance". The latter appears when the pulse charge frequency approaches the characteristic frequency of the Pb electrodeposition process, given by the product between EDL capacitance and the charge transfer resistance.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2008.10.098