Analysis of inorganic cations in biological samples by the combination of micro-electrodialysis and capillary electrophoresis with capacitively coupled contactless conductivity detection

Micro-electrodialysis (μED) and CE were combined for rapid pretreatment and subsequent determination of inorganic cations in biological samples. Combination of μED with CE greatly improved the analytical performance of the latter as the adsorption of high molecular weight compounds present in real s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2011-02, Vol.32 (3-4), p.464-471
Hauptverfasser: Doan, Thi Kieu Oanh, Kubáň, Pavel, Kubáň, Petr, Kiplagat, Isaac K, Boček, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Micro-electrodialysis (μED) and CE were combined for rapid pretreatment and subsequent determination of inorganic cations in biological samples. Combination of μED with CE greatly improved the analytical performance of the latter as the adsorption of high molecular weight compounds present in real samples on the inner capillary wall was eliminated. Fifty microliter of 80-fold diluted human body fluids such as plasma, serum and whole blood was used in the donor compartment of the μED system requiring less than 1 μL of the original body fluid per analysis. Inorganic cations that migrated through a cellulose acetate dialysis membrane with molecular weight cut-off value of 500 Da were collected in the acceptor solution and were then analyzed using CE-C⁴D. Baseline separation of inorganic cations was achieved in a BGE solution consisting of 12.5 mM maleic acid, 15 mM L-arginine and 3 mM 18-crown-6 at pH 5.5. Repeatability of the CE-C⁴D method was better than 0.5% and 2.5% for migration times and peak areas, respectively; limits of detection of all inorganic cations in the presence of 2 mM excess of Na⁺ were around 1 μM and calibration curves were linear with correlation coefficients better than 0.998. Repeatability of the sample pretreatment procedure was calculated for six independent electrodialysis runs of artificial and real samples and was better than 11.8%. Recovery values between 96.3 and 110% were achieved for optimized electrodialysis conditions of standard solutions and real samples; lifetime of the dialysis membranes for pretreatment of real samples was estimated to 100 runs.
ISSN:0173-0835
1522-2683
1522-2683
DOI:10.1002/elps.201000423