Geometrical interpretation of the multi-point flux approximation L-method
In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Di...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2009-08, Vol.60 (11), p.1173-1199 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1199 |
---|---|
container_issue | 11 |
container_start_page | 1173 |
container_title | International journal for numerical methods in fluids |
container_volume | 60 |
creator | Cao, Yufei Helmig, Rainer Wohlmuth, Barbara I. |
description | In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.1926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896225833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896225833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKfgT-iN6E1nPtakuZTp6nAoguJlSNOERftl0uL2781s2Z1X58B53pfDA8AlgjMEIb41ZTFDHNMjMEGQsxgSSo7BBGKGYgw5OgVn3n9CCDlOyQSsMt1UunNWyTKydadd63QnO9vUUWOibqOjqi87G7dNuEam7LeRbFvXbG01UOs45DdNcQ5OjCy9vhjnFLwvH94Wj_H6JVst7taxIjShMdXGEIOZKpI50nOmKFFM5ZQVmFGaE4y5ZJopKTnLtTKYM45UnqqQK6DKyRRcD73hie9e-05U1itdlrLWTe9FyinGSUpIIG8GUrnGe6eNaF342u0EgmIvSwRZYi8roFdjqfTBhHGyVtYfeBzMMfbHxQP3Y0u9-7dPLNf3Y-_IW9_p7YGX7ktQRlgiPp4z8ZrNw3rPxBP5BSCAiEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896225833</pqid></control><display><type>article</type><title>Geometrical interpretation of the multi-point flux approximation L-method</title><source>Access via Wiley Online Library</source><creator>Cao, Yufei ; Helmig, Rainer ; Wohlmuth, Barbara I.</creator><creatorcontrib>Cao, Yufei ; Helmig, Rainer ; Wohlmuth, Barbara I.</creatorcontrib><description>In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>ISSN: 1097-0363</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1926</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Approximation ; Computational methods in fluid dynamics ; convergence ; Dirichlet boundary ; Dirichlet problem ; Discretization ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Flux ; Fundamental areas of phenomenology (including applications) ; homogeneous media ; L-method ; Mathematical analysis ; Mathematical models ; Media ; multi-point flux ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Numerical analysis ; O-method ; Physics</subject><ispartof>International journal for numerical methods in fluids, 2009-08, Vol.60 (11), p.1173-1199</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</citedby><cites>FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1926$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1926$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22097726$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Yufei</creatorcontrib><creatorcontrib>Helmig, Rainer</creatorcontrib><creatorcontrib>Wohlmuth, Barbara I.</creatorcontrib><title>Geometrical interpretation of the multi-point flux approximation L-method</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>Approximation</subject><subject>Computational methods in fluid dynamics</subject><subject>convergence</subject><subject>Dirichlet boundary</subject><subject>Dirichlet problem</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Flux</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>homogeneous media</subject><subject>L-method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Media</subject><subject>multi-point flux</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Numerical analysis</subject><subject>O-method</subject><subject>Physics</subject><issn>0271-2091</issn><issn>1097-0363</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKfgT-iN6E1nPtakuZTp6nAoguJlSNOERftl0uL2781s2Z1X58B53pfDA8AlgjMEIb41ZTFDHNMjMEGQsxgSSo7BBGKGYgw5OgVn3n9CCDlOyQSsMt1UunNWyTKydadd63QnO9vUUWOibqOjqi87G7dNuEam7LeRbFvXbG01UOs45DdNcQ5OjCy9vhjnFLwvH94Wj_H6JVst7taxIjShMdXGEIOZKpI50nOmKFFM5ZQVmFGaE4y5ZJopKTnLtTKYM45UnqqQK6DKyRRcD73hie9e-05U1itdlrLWTe9FyinGSUpIIG8GUrnGe6eNaF342u0EgmIvSwRZYi8roFdjqfTBhHGyVtYfeBzMMfbHxQP3Y0u9-7dPLNf3Y-_IW9_p7YGX7ktQRlgiPp4z8ZrNw3rPxBP5BSCAiEs</recordid><startdate>20090820</startdate><enddate>20090820</enddate><creator>Cao, Yufei</creator><creator>Helmig, Rainer</creator><creator>Wohlmuth, Barbara I.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090820</creationdate><title>Geometrical interpretation of the multi-point flux approximation L-method</title><author>Cao, Yufei ; Helmig, Rainer ; Wohlmuth, Barbara I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Computational methods in fluid dynamics</topic><topic>convergence</topic><topic>Dirichlet boundary</topic><topic>Dirichlet problem</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Flux</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>homogeneous media</topic><topic>L-method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Media</topic><topic>multi-point flux</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Numerical analysis</topic><topic>O-method</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yufei</creatorcontrib><creatorcontrib>Helmig, Rainer</creatorcontrib><creatorcontrib>Wohlmuth, Barbara I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yufei</au><au>Helmig, Rainer</au><au>Wohlmuth, Barbara I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical interpretation of the multi-point flux approximation L-method</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2009-08-20</date><risdate>2009</risdate><volume>60</volume><issue>11</issue><spage>1173</spage><epage>1199</epage><pages>1173-1199</pages><issn>0271-2091</issn><issn>1097-0363</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.1926</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2009-08, Vol.60 (11), p.1173-1199 |
issn | 0271-2091 1097-0363 1097-0363 |
language | eng |
recordid | cdi_proquest_miscellaneous_896225833 |
source | Access via Wiley Online Library |
subjects | Approximation Computational methods in fluid dynamics convergence Dirichlet boundary Dirichlet problem Discretization Exact sciences and technology Flows through porous media Fluid dynamics Flux Fundamental areas of phenomenology (including applications) homogeneous media L-method Mathematical analysis Mathematical models Media multi-point flux Multiphase and particle-laden flows Nonhomogeneous flows Numerical analysis O-method Physics |
title | Geometrical interpretation of the multi-point flux approximation L-method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20interpretation%20of%20the%20multi-point%20flux%20approximation%20L-method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Cao,%20Yufei&rft.date=2009-08-20&rft.volume=60&rft.issue=11&rft.spage=1173&rft.epage=1199&rft.pages=1173-1199&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1926&rft_dat=%3Cproquest_cross%3E896225833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896225833&rft_id=info:pmid/&rfr_iscdi=true |