Geometrical interpretation of the multi-point flux approximation L-method

In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2009-08, Vol.60 (11), p.1173-1199
Hauptverfasser: Cao, Yufei, Helmig, Rainer, Wohlmuth, Barbara I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1199
container_issue 11
container_start_page 1173
container_title International journal for numerical methods in fluids
container_volume 60
creator Cao, Yufei
Helmig, Rainer
Wohlmuth, Barbara I.
description In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.1926
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_896225833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896225833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKfgT-iN6E1nPtakuZTp6nAoguJlSNOERftl0uL2781s2Z1X58B53pfDA8AlgjMEIb41ZTFDHNMjMEGQsxgSSo7BBGKGYgw5OgVn3n9CCDlOyQSsMt1UunNWyTKydadd63QnO9vUUWOibqOjqi87G7dNuEam7LeRbFvXbG01UOs45DdNcQ5OjCy9vhjnFLwvH94Wj_H6JVst7taxIjShMdXGEIOZKpI50nOmKFFM5ZQVmFGaE4y5ZJopKTnLtTKYM45UnqqQK6DKyRRcD73hie9e-05U1itdlrLWTe9FyinGSUpIIG8GUrnGe6eNaF342u0EgmIvSwRZYi8roFdjqfTBhHGyVtYfeBzMMfbHxQP3Y0u9-7dPLNf3Y-_IW9_p7YGX7ktQRlgiPp4z8ZrNw3rPxBP5BSCAiEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896225833</pqid></control><display><type>article</type><title>Geometrical interpretation of the multi-point flux approximation L-method</title><source>Access via Wiley Online Library</source><creator>Cao, Yufei ; Helmig, Rainer ; Wohlmuth, Barbara I.</creator><creatorcontrib>Cao, Yufei ; Helmig, Rainer ; Wohlmuth, Barbara I.</creatorcontrib><description>In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>ISSN: 1097-0363</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.1926</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Approximation ; Computational methods in fluid dynamics ; convergence ; Dirichlet boundary ; Dirichlet problem ; Discretization ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Flux ; Fundamental areas of phenomenology (including applications) ; homogeneous media ; L-method ; Mathematical analysis ; Mathematical models ; Media ; multi-point flux ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; Numerical analysis ; O-method ; Physics</subject><ispartof>International journal for numerical methods in fluids, 2009-08, Vol.60 (11), p.1173-1199</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</citedby><cites>FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.1926$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.1926$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22097726$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Yufei</creatorcontrib><creatorcontrib>Helmig, Rainer</creatorcontrib><creatorcontrib>Wohlmuth, Barbara I.</creatorcontrib><title>Geometrical interpretation of the multi-point flux approximation L-method</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Computational methods in fluid dynamics</subject><subject>convergence</subject><subject>Dirichlet boundary</subject><subject>Dirichlet problem</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Flux</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>homogeneous media</subject><subject>L-method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Media</subject><subject>multi-point flux</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>Numerical analysis</subject><subject>O-method</subject><subject>Physics</subject><issn>0271-2091</issn><issn>1097-0363</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKfgT-iN6E1nPtakuZTp6nAoguJlSNOERftl0uL2781s2Z1X58B53pfDA8AlgjMEIb41ZTFDHNMjMEGQsxgSSo7BBGKGYgw5OgVn3n9CCDlOyQSsMt1UunNWyTKydadd63QnO9vUUWOibqOjqi87G7dNuEam7LeRbFvXbG01UOs45DdNcQ5OjCy9vhjnFLwvH94Wj_H6JVst7taxIjShMdXGEIOZKpI50nOmKFFM5ZQVmFGaE4y5ZJopKTnLtTKYM45UnqqQK6DKyRRcD73hie9e-05U1itdlrLWTe9FyinGSUpIIG8GUrnGe6eNaF342u0EgmIvSwRZYi8roFdjqfTBhHGyVtYfeBzMMfbHxQP3Y0u9-7dPLNf3Y-_IW9_p7YGX7ktQRlgiPp4z8ZrNw3rPxBP5BSCAiEs</recordid><startdate>20090820</startdate><enddate>20090820</enddate><creator>Cao, Yufei</creator><creator>Helmig, Rainer</creator><creator>Wohlmuth, Barbara I.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090820</creationdate><title>Geometrical interpretation of the multi-point flux approximation L-method</title><author>Cao, Yufei ; Helmig, Rainer ; Wohlmuth, Barbara I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3656-6eff3f27cd541e47c63c7cb67d2766b3229a7e7caa97becf29791cb8ceffd0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Approximation</topic><topic>Computational methods in fluid dynamics</topic><topic>convergence</topic><topic>Dirichlet boundary</topic><topic>Dirichlet problem</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Flux</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>homogeneous media</topic><topic>L-method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Media</topic><topic>multi-point flux</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>Numerical analysis</topic><topic>O-method</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yufei</creatorcontrib><creatorcontrib>Helmig, Rainer</creatorcontrib><creatorcontrib>Wohlmuth, Barbara I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yufei</au><au>Helmig, Rainer</au><au>Wohlmuth, Barbara I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical interpretation of the multi-point flux approximation L-method</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2009-08-20</date><risdate>2009</risdate><volume>60</volume><issue>11</issue><spage>1173</spage><epage>1199</epage><pages>1173-1199</pages><issn>0271-2091</issn><issn>1097-0363</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>In this paper, we first investigate the influence of different Dirichlet boundary discretizations on the convergence rate of the multi‐point flux approximation (MPFA) L‐method by the numerical comparisons between the MPFA O‐ and L‐method, and show how important it is for this new method to handle Dirichlet boundary conditions in a suitable way. A new Dirichlet boundary strategy is proposed, which in some sense can well recover the superconvergence rate of the normal velocity. In the second part of the work, the MPFA L‐method with homogeneous media is studied. A systematic concept and geometrical interpretations of the L‐method are given and illustrated, which yield more insight into the L‐method. Finally, we apply the MPFA L‐method for two‐phase flow in porous media on different quadrilateral grids and compare its numerical results for the pressure and saturation with the results of the two‐point flux approximation method. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.1926</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2009-08, Vol.60 (11), p.1173-1199
issn 0271-2091
1097-0363
1097-0363
language eng
recordid cdi_proquest_miscellaneous_896225833
source Access via Wiley Online Library
subjects Approximation
Computational methods in fluid dynamics
convergence
Dirichlet boundary
Dirichlet problem
Discretization
Exact sciences and technology
Flows through porous media
Fluid dynamics
Flux
Fundamental areas of phenomenology (including applications)
homogeneous media
L-method
Mathematical analysis
Mathematical models
Media
multi-point flux
Multiphase and particle-laden flows
Nonhomogeneous flows
Numerical analysis
O-method
Physics
title Geometrical interpretation of the multi-point flux approximation L-method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A44%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20interpretation%20of%20the%20multi-point%20flux%20approximation%20L-method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Cao,%20Yufei&rft.date=2009-08-20&rft.volume=60&rft.issue=11&rft.spage=1173&rft.epage=1199&rft.pages=1173-1199&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.1926&rft_dat=%3Cproquest_cross%3E896225833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896225833&rft_id=info:pmid/&rfr_iscdi=true